前言:中文期刊網精心挑選了高分子材料的優點范文供你參考和學習,希望我們的參考范文能激發你的文章創作靈感,歡迎閱讀。
高分子材料的優點范文1
【關鍵詞】高分子材料;成型加工技術;創新
現代社會中,科學技術成為了推動經濟發展,促進社會進步的重要力量,也正是由于科技是第一生產力的這一理念,各個國家的科技都達到了前所未有的發展速度。高分子技術應運而生,隨著人類對高分子技術的深入了解,在應用過程中遇到的很多問題有待探討,本文中就高分子材料成型加工技術的發展與創新進行了深入的討論,也希望能夠為我國的高分子技術貢獻一份力量。
一、簡述高分子材料成型加工術的發展歷程
在對一項科學技術進行深入探討之前,很有必要對其的產生、發展到應用的過程有所了解。由于新型高分子材料的發現較早,但是由于觀念上的落后以及設備上的落后,導致高分子材料從發現到大規模的應用于工業流程中所耗費的時間較為漫長。近年來,隨著關于高分子技術的一系列難題攻破,到更多、更加優良的高分子材料被發現,高分子技術開始進入飛速發展的時代。20世紀90年代塑料的平均增長率有了很大的提升,隨之而來的塑料產量也有很大幅度的提升。不管是在塑料的產量上有了大幅度的提升,在塑料的種類上,材質上,應用范圍上都有了很大的優化與發展。舉個例子來說,之前制造一批汽車可能需要三百噸鋼鐵,而現在可能只需要三百噸的塑料就能達到相同的效果,甚至更好的效果。在鋼材日益減少的現在,這些高分子材料的發明給了人類在發展道路上無限種可能。在汽車行業中,由傳統純鋼鐵制造的汽車可能已經無法滿足現代人類的需要了,而對于高分子材料制造而成的汽車,不僅在強度上不輸于鋼鐵,在造價,環保方面更是勝于鋼鐵一籌。而在其他方面也會有很多改變,規模上要更小一些,周期要相對更短一些,能量的消耗要更低一些,回收率要更高一些,對空氣的污染程度和對資源的消耗要更小一些。
二、創新型高分子材料成型加工技術
1.聚合物動態反應加工技術及設備
聚合物反應加工技術是以現雙螺桿擠出機為基礎發展起來的。目前國外已經對這一個項目進行了深入的研究,并且已經研制出了連續反應和混煉的桿螺桿擠出機,這一項研究的產生,有效地解決了雙螺桿擠出問題,還有這其他類似的反應器所不具有的優點。
在這些設備的發展過程中,技術是至關重要的一個環節,在技術上必須要有所突破。指交換法聚碳酸醞(PC)連續化生產和尼龍生產中的比較關鍵的技術是縮聚反應器的反應擠出設備,而在現在世界上所使用的反應加工設備上來看,大多數都是利用傳統的混合、混煉技術,有些國外的企業也只是對傳統的反應器進行了小范圍的優化。但是根本上都存在傳熱、傳質過程、混煉過程、化學反應過程難以控制、反應產物分子量及其分布不可控等問題。另外設備投資費用大、能耗高、噪音大、密封困難等也都是傳統反應加工設備的缺陷。聚合物動態反應加工技術及設備與傳統技術無論是在反應加工原理還是設備的結構上都完全不同,該技術是將電磁場引起的機械振動場引入聚合物反應擠出全過程,達到控制化學反應過程、反應生成物的凝聚態結構和反應制品的物理化學性能的目的。這一項技術實現了聚合物單體或預聚物混合混煉過程中的理論的突破,有了新的理論作為指導,新型的加工反應器才能夠制作出來。新的技術從理論上解決了聚合物單體或預聚物混合混煉過程及停留時間分布不可控制的難點,同時從技術上解決了設備結構集成化問題。新設備具有體積重量小、能耗低、噪音低、制品性能可控、適應性好、可靠性高等優點,這此優點是傳統技術與設備無法比擬或是根本沒有的。
2.新材料制備動態反應加工設備技術的革新
這一項技術的革新主要是指信息存儲光盤直接合成反應成型技術的發明,這項技術具有當代新技術所需要的大多數優點,由于采取了全然不同的理論指導和流程,這項技術具有周期短,操作建議,對環境污染小,節約資源的優點。正是由于這些優點的存在,這項技術打破了原有傳統技術的局限性,避免了很多問題的出現。而且隨著光盤存儲技術的發展,這項技術還有無限的提升空間。它的主要工作機理是把光盤級的PC樹脂化,將中間存儲和盤基成型融合在一個流程當中,再借鑒動態連續反應成型技術對交換連續化生產技術進行研究和發展。
3、復合材料物理場強化制備技術
此技術在強振動剪切力場作用下對無機粒子表而特性及其功能設計,整個流程都是在設計好的連續的加工環境中進行,省去了其他化學催化劑或者改性劑的參與,有效地實現了資源的節約。利用聚合物使無機粒子進行原位表面性、原位包覆、強制分散,實現連續化制備聚合物/無機物復合材料熱塑性彈性體動態全硫化制各技術:此技術將振動力場引入混煉擠出全過程,控制硫化反直進程,實現混煉過程中橡膠相動態全硫化。解決共混加工過程共混物相態反轉問題。
三、展望高分子材料成型加工技術未來的發展方向
近年來,在世界上的高分子材料成型技術的發展熱潮的影響下,我國的各省各地也加快了高分子材料成型技術的發展,相關部門也加大了政策上的支持。這一做法是完全符合我國改革開放以來的經濟發展路線,因此這一技術已經具備了發展的一切有利因素。
我國的各個城市陸續展開這項技術的推廣,已經有超過一半的地區在推廣和使用這一技術,這一技術所創造的經濟利益也是不容忽視的,很多地區已經將這一技術變成一個產業,工業制成品大量出口到歐洲和亞洲的很多國家和地區,在國際貿易方面有非常顯的成效,不但提高了出口的多樣性,而且拉動了社會效益和經濟效益的增長。在未來的時間里,這項技術還具有非常大的發展空間,新型高分子材料成型技術還可以應用在更多的領域,相信會有一天高分子材料會成為我們日常生活中不可缺少的東西。希望以后有更多的人才投入到這項技術中去,這樣我國的高分子成型材料加工技術才能夠趕超發達國家,為我國的外貿的發展。
四、結語
綜合上文所陳述的,我國要想在高分子材料的道路上走的更遠,必須牢記科技史第一生產力的這一原則。并且只有隨著高分子材料的不斷深入應用,我國才能夠更好地建設資源節約型環境友好型社會,才能讓世界看到中國的發展不是以犧牲環境,大量消耗資源為代價的。推動高分子加工合成技術勢在必行。
參考文獻
高分子材料的優點范文2
較詳細地評述了高分子材料的研究方向和應用發展方向.
關鍵詞:高分子材料 應用 現狀 發展
高分子材料(macromolecular material),以高分子化合物為基礎的材料。高分子材料是由相對分子質量較高的化合物構成的材料,包括橡膠、塑料、纖維、涂料、膠粘劑和高分子基復合材料,高分子是生命存在的形式。所有的生命體都可以看作是高分子的集合。
高分子材料按來源分為天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和進化的基礎。人類社會一開始就利用天然高分子材料作為生活資料和生產資料,并掌握了其加工技術。如利用蠶絲、棉、毛織成織物,用木材、棉、麻造紙等。19世紀30年代末期,進入天然高分子化學改性階段,出現半合成高分子材料。1907年出現合成高分子酚醛樹脂,標志著人類應用合成高分子材料的開始。現代,高分子材料已與金屬材料、無機非金屬材料相同,成為科學技術、經濟建設中的重要材料。
高分子材料的結構決定其性能,對結構的控制和改性,可獲得不同特性的高分子材料。高分子材料獨特的結構和易改性、易加工特點,使其具有其他材料不可比擬、不可取代的優異性能,從而廣泛用于科學技術、國防建設和國民經濟各個領域,并已成為現代社會生活中衣食住行用各個方面不可缺少的材料。很多天然材料通常是高分子材料組成的,如天然橡膠、棉花、人體器官等
目前,高分子材料的應用現狀主要有以下幾個方面:
1.傳統產品
如纖維、橡膠、塑料等等
2.高分子分離膜
高分子分離膜是用高分子材料制成的具有選擇性透過功能的半透性薄膜。采用這樣的半透性薄膜,以壓力差、溫度梯度、濃度梯度或電位差為動力,使氣體混合物、液體混合物或有機物、無機物的溶液等分離技術相比,具有省能、高效和潔凈等特點,因而被認為是支撐新技術革命的重大技術。
3.高分子磁性材料
高分子磁性材料,是人類在不斷開拓磁與高分子聚合物(合成樹脂、橡膠)的新應用領域的同時,而賦予磁與高分子的傳統應用以新的涵義和內容的材料之一。早期磁性材料源于天然磁石,以后才利用磁鐵礦(鐵氧體)燒結或鑄造成磁性體,現在工業常用的磁性材料有三種,即鐵氧體磁鐵、稀土類磁鐵和鋁鎳鈷合金磁鐵等。它們的缺點是既硬且脆,加工性差。為了克服這些缺陷,將磁粉混煉于塑料或橡膠中制成的高分子磁性材料便應運而生了。這樣制成的復合型高分子磁性材料,因具有比重輕、容易加工成尺寸精度高和復雜形狀的制品,還能與其它元件一體成型等特點,而越來越受到人們的關高分子材料。
4.光功能高分子材料
所謂光功能高分子材料,是指能夠對光進行透射、吸收、儲存、轉換的一類高分子材料。目前,這一類材料已有很多,主要包括光導材料、光記錄材料、光加工材料、光學用塑料(如塑料透鏡、接觸眼鏡等)、光轉換系統材料、光顯示用材料、光導電用材料、光合作用材料等。光功能高分子材料在整個社會材料對光的透射,可以制成品種繁多的線性光學材料,像普通的安全玻璃、各種透鏡、棱鏡等;利用高分子材料曲線傳播特性,又可以開發出非線性光學元件,此外,利用高分子材料的光化學反應,可以開發出在電子工業和印刷工業上得到廣泛使用的感光樹脂、光固化涂料及粘合劑;利用高分子材料的能量轉換特性,可制成光導電材料和光致變色材料;利用某些高分子材料的折光率隨機械應力而變化的特性,可開發出光彈材料,用于研究力結構材料內部的應力分布等。
5.高分子復合材料
高分子材料和另外不同組成、不同形狀、不同性質的物質復合粘結而成的多相材料。高分子復合材料最大優點是博各種材料之長,如高強度、質輕、耐溫、耐腐蝕、絕熱、絕緣等性質高分子結構復合材料包括兩個組分:增強劑。為具有高強度、高模量、耐溫的纖維及織物,如玻璃纖維、氮化硅晶須、硼纖維及以上纖維的織物;基體材料。主要是起粘合作用的膠粘劑,如不飽合聚酯樹脂、環氧樹脂、酚醛樹脂、聚酰亞胺等熱固性樹脂及苯乙烯、聚丙烯等熱塑性樹脂,這種復合材料的比強度和比模量比金屬還高,是國防、尖端技術方面不可缺少的材料。
目前,我國高分子材料應在進一步開發通用高分子材料品種、提高技術水平、擴大生產以滿足市場需要的基礎上,重點發展以下方向:
1.工程塑料
全世界通用熱塑性樹脂約占97%,工程塑料的生產規模遠不如通用塑料,但因市場的需求,近年來其發展的速度則遠遠高于通用塑料,年均增長率達7%~8%。近年來工程塑料的發展方向是研究開發工程塑料高分子合金、發展超韌尼龍、超韌聚甲醛、耐應力開裂聚碳、聚苯醚和聚礬等高性能合金研究開發特種工程塑料,如聚酞亞胺。
2.復合材料
復合材料合成一種新材料使之滿足各種高要求的綜合指標。復合材料的發展可以分為4個方面。一是以玻璃纖維增強為手段,對大品種塑料進行改性研究開發新的復合工藝;二是采用高性能增強劑如碳纖維等來增強耐高溫等高性能樹脂;三是開發新型熱塑性樹脂基體如熱塑性聚酞亞胺;四是研究開發功能復合材料,如壓電材料等。
3. 液晶高分子材料
液晶聚合物是介于固體結晶和液體之間的中間狀態的聚合物 ,其分子排列的有序性雖不如固體晶體那樣有序,但也不是液體那樣的無序 ,而是具有一定的 一維或二維 有序性 ,當加工此種聚合物 ,如紡絲或注射成型時,其分子發生取向 這種分子取向一旦冷卻即被固定下來,從而具有不尋常的物理和機械性能。
高分子材料的優點范文3
【關鍵詞】高分子材料 合成應用 綠色戰略
綠色化學的概念從提出到現在一直備受關注,我國的化學研究工作中也逐漸重視綠色和環保的理念。尤其是在高分子材料的研究方面,人們更傾向于無毒的環保的生產過程。近來,高分子材料的綠色化學有了新的進展,高分子材料合成與應用中的綠色戰略已經形成。
1 原材料本身的無毒化
在現今的高分子化學材料的研究過程中我們逐漸引進了生物降解的技術來保證高分子化學材料本身的無毒和綠色,這也是化學研究的一大熱門領域。用生物來降解高分子化學材料的方式應用較為廣泛,降解的高分子材料包括了天然的有機高分子材料和合成的有機高分子材料。這種技術對淀粉、海藻酸、聚氨基酸等各種高分子的研究非常實用。目前,醫藥領域的許多材料多采用這種綠色無毒的形式來進行生產,達到和人體的和諧相容。
2 高分子原料合成朝無毒化方向發展
高分子原料的合成也在向綠色的方向發展。在化學合成過程中,許多高分子化學材料的合成可以采用一步催化的方式來完成,轉化利用率可以達到百分之一百。而且這種過程避免了使用有毒的化學催化劑,改變了傳統的操作模式。例如已二酸的合成就是采用生物合成的技術,使其生產過程完全綠色化,安全可操作。傳統的方法生產環氧丙烷是采用兩步反應的方式,而且中間使用了氯氣。這種氣體帶有一定的毒性會造成環境的污染。但現在,國內外已經改變了這種生產方法,采用的催化氧化的方法使原材料在制作反應的過程中完全利用,而不產生有的物質來污染環境。目前,在進行制作合成化學材料的過程中,許多都在逐步改善材料合成產生有毒廢棄物的或排放物的情況,朝著綠色生態環保的方向發展。
3 合成原料的綠色化
生活物質材料中有許多都是采用高分子合成的原料制造的。尤其是醫用材料,這些材料在使用的過程中必須保證無毒,而且必須是生物可降解、可以為人體的免疫系統所接受的。因此,對合成原料的要求必須是綠色的、安全的。近年來,在這方面,國內外已經取得了較多的成就。
1988年在荷蘭有相關學著就在研究聚乳酸類網狀彈性體材料,這種材料完全采用綠色原料合成,并且可以被生物所降解。他們用賴氨酸二異氰酸醋等擴鏈了由肌醇、L--丙交酯等生成的星形預聚體。LDI可以稱為“綠色”的二異氰酸酯擴鏈劑,因為LDI擴鏈部分最終的降解產物是乙醇、賴氨酸等,這些降解產物都是無毒的,完全可以進行生物利用。在這一聚合物生成的過程中,不僅最終的產物是環保安全的,而且其原料肌醇是人體所需的維生素之一,乳酸、6―烴基己酸等在生物醫學上頗為常見,也是一些安全的、“綠色”的物質,可以說這一過程接近于“完全綠色”。1994年strey等學者在此基礎上進行進一步的研究,合成了與該綠色試劑LDI聚乳酸衍生物,用高結晶性的聚乙醇酸纖維為增強材料,制備了無毒的、可生物吸收的骨科固定復合材料。
4 催化劑的綠色化
在聚乳酸類材料研究過程中,雖然目前的高分子原材料和聚合物都實現了基本的綠色化、無毒化,但在這過程中大家可能會忽略一個因素,那就是催化劑的使用安全問題。例如聚乳酸化合物的生成過程中大多采用辛酸亞錫作為中間催化劑,加快化學反應的過程。但是這種催化劑由于含有錫鹽成分可能會具有生理毒性,如果是人體吸收可能會造成中毒的情況。相比而言,用生物酶作催化劑就顯得安全可靠。使用生物酶催化的瓶頸在于酶的種類有限問題,致使一些化學反應找不到相應的生物酶進行催化。在目前的高分子聚合物當中,雖然一些加聚反應的原子利用率可以達到100%,但是各種催化劑和添加劑的使用對安全情況造成的影響卻不能忽視。尤其是在醫用物品當中,必須對這些材料的安全性進行試驗和考核。催化劑的綠色化道路的發展還值得我們進一步努力探索。
5 合成高分子材料的安全應用
人工合成的高分子材料可能會對環境存在一定的危害,對不可利用的高分子材料的垃圾處理也得考慮到綠色無毒的問題。我們必須選擇正確的方法來安全使用這些高分子材料。
對于可用生物降解的高分子合成材料可以采用填埋的方式進行處理。對于不可生物降解的高分子材料廢物進行分類,主要分為可回收利用的廢物和不可回收利用的廢物。將可回收的高分子材料分類進行整理,實現循環利用,減少資源的浪費。對于可焚燒的高分子材料可以進行焚燒處理,還可以將垃圾焚燒過程中釋放的熱能加以利用。
(1)對可以再生與循環使用的環境惰性高分子材料,如 PP、PE、PET、尼龍 66、PMMA、PS 等,應盡可能地再次利用,盡可能避免使用填埋方法處理環境惰性塑料垃圾。
(2)PP、PE等聚烯烴具有很高的熱值,與燃料油相當,并且具有無害化燃燒特性。因此,可以將這些高分子材料燃燒產生的巨大熱能轉化為電能或者其他形式的能源,避免熱能污染。目前,順利實施城市生活垃圾變電能的關鍵是將 PVC 除開,避免與PP、PE等混雜,避免造成能源回收困難而浪費能源。
(3)對 PVC 應合理使用。PVC 的制造、加工、使用和廢棄物的處理,都涉及環境問題,其中最危險的是PVC 廢棄物的處理。PVC的加工過程使用的添加劑非常多,使用不當就會使材料中的有毒物質滲出,應該盡量避免其與食物和醫藥產品的接觸。PVC廢棄物處理要盡可能避免使用焚燒的方式,因為這種高分子材料在焚燒的過程中會產生毒性物質,對環境造成的傷害非常大。應盡快使 PVC退 出包裝、玩具 、地膜等使用周期短的應用領域;同時,鑒于PVC具有節約天然資源、適用性廣、價格低廉、難燃、血液相容性好等優點,應加強對 PVC 生產、加工、使用、廢棄物處理等方面的研究。
6 結語
高分子材料合成與應用的綠色化、無毒化、安全化會是將來高分子材料化學發展的熱潮,結合高分子材料特有的實用性因素來建立高分子材料綠色戰略的系統,可以使高分子材料化學朝著更加全面的、長遠的綠色化道路發展。
參考文獻
[1] 戈明亮.高分子材料探尋綠色發展之路[J].中國化工報,2003
[2] 羅水鵬.綠色高分子材料的研究進展[J].廣東化工,2012
[3] 石璞,戈明亮.高分子材料的綠色可持續發展[J].化工新型材料,2006
高分子材料的優點范文4
關鍵詞:高分子材料,;材料成型; 控制技術
中圖分類號: TB324文獻標識碼:A 文章編號:
前言
隨著現代社會科技水平的提高和科技工作者的努力,高分子材料成型技術得到了飛速的發展,在現代化的工業建設中起著越來越重要的作用。下面通過簡要敘述高分子材料成型的基本原理、高分子材料成型過程中的控制。探析高分子材料成型及其控制技術。
1.高分子材料成型的基本原理及問題
通常,在傳統的高分子工業生產中,高分子材料的制備和加工成型是兩個截然不同的工藝過程。制備過程主要是化學過程:單體、催化劑及其他助劑通過反應堆或其他合成反應器生成聚合物。聚合反應往往需要幾小時甚至數十小時, 部分聚合反應還需要在高溫、高壓或真空等條件下進行。聚合反應結束后再分離、提純、脫揮和造粒等后處理工序。制備過程流程長、能耗高、環境污染嚴重,增加了制造成本。合成的聚合物再通過加工成型,得到制品。一般采用擠塑、注塑、吹塑或壓延等成型工藝,設備投資大。此外,加工過程中,聚合物需要再次熔融,增加了能耗。高分子材料反應加工是將高分子材料的合成和加工成型融為一體,賦予傳統的加工設備(如螺桿擠出機等)以合成反應器的功能。單體、催化劑及其他助劑或需要進行化學改性的聚合物由擠出機的加料口加入,在擠出機中進行化學反應形成聚合物或經化學改性的新型聚合物。同時,通過在擠出機頭安裝適當的口模,直接得到相應的制品。反應加工具有應周期短(只需幾分到十幾分鐘)、生產連續、無需進行復雜的分離提純和溶劑回收等后處理過程、節約能源和資源、環境污染小等諸多優點。
高分子材料的性能不僅依賴于大分子的化學和鏈結構,而且在很大程度上依賴于材料的形態。聚合物形態主要包括結晶、取向等, 多相聚合物還包括相形態( 如球、片、棒、纖維及共連續相等) 。聚合物制品形態主要是在加工過程中復雜的溫度場與外力場作用下原位形成的。
高分子反應加工分為兩個部分:反應擠出和反應注射成型。目前國內外研究與開發的熱點集中在反應擠出領域。高分子材料的反應擠出通常包括兩個方面:一是將反應單體、對話及核反應助劑直接引入螺桿擠出機,在連續擠出的過程中發生聚合反應,生成聚合物;二是將一種或數種聚合物引入螺桿擠出機, 并在擠出機的適當部位加入反應單體、催化劑或反應助劑, 在連續擠出的過程中,使單體發生均聚或與聚合物共聚,或使聚合物間發生偶聯、接枝、酯交換等反應, 對聚合物進行化學改性或形成新的聚合物。反應加工過程中涉及的化學反應有自由基引發聚合、負( 或正) 離子引發聚合、縮聚、加聚等多種反應類型, 與傳統反應需數小時或十幾小時相比,其反應時間往往只有幾分鐘或幾十分鐘。
高分子材料的合成和制備一般是由幾個化工單元操作組成的,高分子反應加工把多個單元操作熔為一體,有關能量的傳遞和平衡,物料的輸運和平衡問題,與一般單個化工單元操作截然不同。由于反應加工過程中發生的化學反應(聚合)多為放熱反應,傳統聚合過程是利用溶劑和緩慢反應解決傳熱與傳質問題的,而在聚合反應加工過程中,物料的溫度在數分鐘內將達到 400-800℃,若不將反應過程中產生的熱及時的脫除,物料將發生降解和炭化。傳統的加工過程是通過設備給聚合物加熱,而聚合反應加工中是需要快速將聚合生成的熱量通過設備移去,因此,必須從化學工程和工程熱物理學兩個方面開展相應的基礎研究。
高分子材料的物理機械性能、熱性能、加工性能等均取決于其化學結構、分子結構和凝聚態的形態結構,而高分子材料的形態結構則與加工工藝有著密切的關系。
流變學是研究物體流動和變形的科學,高分子材料流變學是其成型加工成制備的理論基礎。伴隨化學反應的高分子材料的流變性質則有其自身的規律和特點。因此, 研究反應加工過程中的化學流變學問題將為反應加工過程的正常進行和反應產物加工成制品提供重要的理論基礎。
2高分子材料成型過程中的控制
一般說來,在六七十年代主要重視的是單一聚合物在通常加工過程中的形態;到了七八十 年代以通常聚合物共混物相形態形成規律以及單一聚合物在特殊加工條件下形態成為主要研究對象;九十 年代以來,主要從控制聚合物形態規律出發, 研究新型聚合物、新型加工過程中聚合物形態形成、發展及調控, 通過新型形態及特殊形態的形成,獲得性能獨特的單一或多相高分分子材料。
我國是自 20 世紀 80 年代以來,對聚合物及其共混物在加工中形態發展和控制給予了高度重視。方向上大體是與國際同步的。近年來,我們國家主要研究內容涉及高分子材料加工過程中形態控制的科學問題,包括高分子在復雜溫度、外力等各種外場作用下聚合物形態結構演化、形成規律以及在溫度、壓力等各種極端狀態下高分子聚集態結構的特點。在已取得的理論成果知道下,開發了多種新型高分子材料,有的產生了良好經濟效益。多數聚合物多相體系不相溶,給共混物加工中形態控制和穩定帶來困難。通常是加入第三組分改善體系的相容性。聚合物加工中制品處于非等溫場中,制品溫度對其形態及性能有很大影響。但在通常聚合物加工中制品溫度控制非常盲目,原因是很難知道不同制品位置溫度隨時間的變化關系。關鍵是要弄清楚聚合物及其共混物在非等溫場作用下制品溫度隨時間變化關系。研究微纖對基體聚合物結晶形態、結構的影響,發現不僅拉伸流動行式成核和纖維成核,而且發現纖維在拉伸流動場作用下輔助成核。將導電離子組裝到微纖中, 使微纖在體系中形成導電三維網絡結構,從而顯著降低體系的導電逾滲值和獨特的 PTC(電阻正溫度效應)和 NTC(電阻負溫度效應)效應。
高分子材料的形態與物理力學性能之間有密不可分的關系,這是高分子材料研究中的一個永恒課題。與其他材料相比, 高分子材料的形態表現出特有的復雜性:高分子鏈有復雜的拓撲結構、共聚構型和剛柔性,可以通過現有的合成方法進行分子設計和結構調整;高分子長鏈結構使得其熔體有粘彈性;高分子的馳豫時間很寬,并在很小的應變作用下出現強烈的非線。
3高分子材料的發展趨勢
高分子材料的高性能化:現有的高分子材料雖已有很高的強度和韌性,某些品種甚至超過鋼鐵,但從理論上推算,還有很大的潛力。另外,為了各方面的應用, 進一步提高耐高溫、耐磨、耐老化等方面的性能是高分子材料發展的重要方向。改善加工成形工藝、共混、復合等方法, 是提高性能的主要途徑。
高分子材料的功能化:高功能化主要是指具有特定作用能力的高分子材料。這種特定作用能力, 即“特定功能”是由于高分子上的基團或分子結構或兩者共同作用的結果。這類高分子材料又稱為功能高分子。例如, 高吸水性材料、光致抗蝕材料、高分子分離膜、高分子催化劑等,都是功能化方面的研究方向。
高分子材科的生物化:生物化是高分子材料發展最快的一個方向。各種醫用高分子就屬于這一范疇。有人認為,除人腦僅 1.5kg 重的大腦外,其他一切器官均可用高分子材料代替。此外, 生命的基礎,細胞、蛋白質、胰島素等也均屬于高分子。生物化于是成為高分子科學的一個最主要發展方向。如合成或模擬天然高分子,使之具有類似的生物活性,代替天然的組織或器官。
結束語
綜上所述,在科技日益進步的今天,我國必須走具有中國特色的發展高分子材料成型加工技術與裝備的道路,把握技術前沿,培育自主知識產權。促進科學研究與產業界的結合,加快成果轉化為生產力的進程,加快我國高分子材料成型加工高新技術及其產業的發展是必由之路。
參考文獻:
[1] 高分子材料的發展方向.國家自然科學基金委員會.高分子材料科學.科學出版社,1994.
[2] 史玉升,李遠才,楊勁松.高分子材料成型工藝[M].化學工業出版社,2006.
高分子材料的優點范文5
Abstract: Function polymer materials are rapidly developing in recently years. But there are not any generalizations to the development of shape memory polymers. The defined, mechanism, characterization and the preparation of the most simulative shape memory polymer are briefly introduced in this paper. Then the developing prospects are also reviewed.
關鍵詞: 功能高分子材料;展望;形狀記憶
Key words: functional polymer materials;outlook;shape memory polyer
中圖分類號:TB324 文獻標識碼:A 文章編號:1006-4311(2012)31-0303-02
0 引言
隨著社會的進步和科學技術的發展,一般的材料難以滿足日益復雜的環境,因此需要具有自修復功能的智能材料——形狀記憶材料。20世紀50年代以來,各國相繼研究出在外加刺激的條件(如光、電、熱、化學、機械等)經過形變可以回復到原始形狀的具有形狀記憶功能的材料,它可分為三大類,形狀記憶合金、形狀記憶陶瓷和形狀記憶聚合物材料。高分子產業的迅速發展,推動了功能高分子材料得到了蓬勃發展。形狀記憶聚合物材料的獨特性,廣泛應用于很多領域并發展潛力巨大,人們開始廣泛關注[1]。
1 功能高分子材料研究概況
功能高分子材料是20世紀60年代的新興學科,是滲透到電子、生物、能源等領域后開發涌現出的新材料。由于它的內容豐富、品種繁多、發展迅速,成為新技術革命不可或缺的關鍵材料,對社會的生活將產生巨大影響。
1.1 功能高分子材料的介紹 功能高分子材料是指具有傳遞、轉換或貯存物質、能量和信息作用的高分子及其復合材料,或具體地指在原有力學性能的基礎上,還具有化學反應活性、光敏性、導電性、催化性、生物相容性、藥理性、選擇分離性、能量轉換性、磁性等功能的高分子及其復合材料,通常也可簡稱為功能高分子,也可稱為精細高分子或特種高分子[2]。
1.2 功能高分子材料分類 可分為兩類:第一類:以原高分子材料為基礎上進行改性或其他方法,使其成為具有人們所需要的且各項性能更好的高分子材料;第二類:是具有新型特殊功能的高分子材料[3]。
1.3 形狀記憶功能高分子材料 自19世紀80年現熱致形狀記憶高分子材料[4],人們開始廣泛關注作為功能材料的一個分支——形狀記憶功能高分子材料。和其它功能材料相比的特點:首先,原料充足,形變量大,質量輕,易包裝和運輸,價格便宜,僅是金屬形狀記憶合金的1%;第二,制作工藝方簡便;形狀記憶回復溫度范圍寬,而且容易加工,易制成結構復雜的異型品,能耗低;第三,耐候性,介電性能和保溫效果良好。
形狀記憶聚合物(SMP)代表一項技術上的重要的類別刺激響應的材料,在于形狀變動的反應。更確切地說,傳統意義上的SMP是聚合物變形,隨后能固定在一個臨時的形狀,這將保持穩定,除非它暴露在一個適當的外部刺激激活了聚合物恢復到它原來的(或永久的形狀)。因此,相關的反應被稱為聚合物內的形狀記憶效應(SME)。雖然各種形式的外部刺激可以被用來作為恢復觸發,最典型的一種是直接加熱,通向溫度增加[4]。
2 部分形狀記憶高分子材料的制備方法
2.1 接枝聚乙烯共聚物 在形狀記憶聚乙烯中,交聯(輻射或化學)是必須的,但是交聯程度過高會導致聚合物的加工性能不好,因此最好是將交聯放在產品制造的最后一步:Feng Kui Li等采用尼龍接枝HDPE獲得了形狀記憶聚合物。他們采用馬來酸酐和DC處理熔融HDPE在180℃反應5分鐘,然后在230℃下和尼龍-6反應5分鐘得到產物。SEM照片顯示尼龍微粒小于0.3μm,在HDPE中分散良好,兩者界面模糊,顯示兩者形成化學粘合;而尼龍和HDPE簡單混合的SEM照片中兩者界面明顯試驗同時表明,隨著DCP含量和尼龍含量的提高,共聚物中形成了更多的共聚物具有和射線交聯聚乙烯(XPE)SMP相似的形狀記憶效應,形變大于95%,恢復速度好于射線交聯的聚乙烯SMP,該聚合物在120℃左右形狀恢復達到最大。對其機理研究表明,接枝在PE上的尼龍形成的物理交聯對形狀記憶效應有重要作用。值得注意的是該共混物是僅僅通過熔融混合得到的,工藝非常簡單,而且采用的是通用聚合物,因此該方法值得推廣[5]。
2.2 聚氨酯及其共混物 聚氨酯是含有部分結晶相的線性聚合物,該聚合物可以是熱塑性的,也可是熱固性的。聚氨酯類形狀記憶材料,軟段的結構組成和相對分子質量是影響其臨界記憶溫度的主要因素,硬段結構對記憶溫度影響不大。
采用聚氨酯和其它聚合物共混,可以改善性能,得到所需要的產物。有報道采用聚己內酰胺(PCL)、熱塑性聚氨酯(TPU)和苯氧基樹脂制得的形狀記憶材料。發現該產物隨著組成的變化而玻璃化轉化溫度不同;同時發現PCL部分在混合物中結晶相消失,說明結晶過程被阻礙。改混合物具有形狀記憶效應的原因在PCL/苯氧樹脂作為了可逆相。該混合物的玻璃化溫度可以通過TPU/苯氧基樹脂的混合比例和種類決定,增加混合物中固定相和減少TPU鏈長度可以減少滯后效應。報道采用PVC和PU共混也能得到SMP。該混合物中存在PVC/PCL形成的無定形相,混合物的玻璃化的溫度也隨著PVC/PCL的組成變化而平穩的發生變化,固定相記憶著最初形狀[6-8]。
3 國內外形狀記憶高分子材料研究現狀
3.1 國內研究現狀 國內研究的形狀記憶高分子材料多以聚氨酯和環氧樹脂基為主,加入添加劑或固化劑進行改性,可以得到滿足基本要求的SMPs,但是由于其自身缺點的約束,所以限制了其使用范圍。最近幾年來,形狀記憶合金以利用聚合物為基體添加其他成分,突出各個優點進行對比,得到一些性能良好的形狀記憶材料因此我們列舉國內最新的SMPs研究。
魏堃等人將新型聚合物固化劑與環氧樹脂(EP)進行機械共混,進行適度交聯固化后,制出具有較低玻璃化轉變溫度(Tg)的無定型EP體系,得出結果顯示適度交聯固化的EP體系具有良好的形狀記憶特性。
高淑春等人利用活化濺射方法制備TiO2薄膜,以Ni-Ti形狀記憶合金生物材料為基體,附著在形狀記憶和金材料的表面,其跟血液相容性比較好,因此具有較高的臨床使用價值。
3.2 國外研究現狀 對比國內,國外的SMPs發展比較早,例如:美國、日本、德國等由于具有先進的設備和理論基礎,因此在各個方面相對國內都比較成熟,所以本人參考最近國外SMPs相關研究在此論述。
Y.C.Lu等人利用環氧基的形狀記憶材料設計模擬服務環境所能反映出的預期性能要求即
①暴露在紫外線輻射下循環為125分鐘;②在室溫下沉浸油內;③浸泡在熱水中49℃。一種新穎的高溫壓痕法評估適應條件的SMPs的形狀和力學性能。結果表明對于有條件的比較一般環境條件SMPs的玻璃化轉變溫度降低與較高模和敏感應變速率。如果溫度設定低環境條件影響的SMPs形狀恢復能力。特別是紫外線暴露和浸入水中的SMPs回復率明顯低與無條件的材料。當回復溫度高于Tg,材料的回復能力相對保持不變。
R.Biju等人用雙酚A(BADC)與縮水甘油醚或者雙酚A(DGEBA)與苯酚螯合物(PTOH)通過一系列聚反應合成熱固性聚合物表現出具有形狀記憶性能。利用差示掃描量熱分析、紅外光譜及流變儀來表征其固化特征。以不同比例DGEBA/PTOH/BADC混合,研究了它們的彎曲、動態力學性能以及熱性能;對于一個給定的成分,彎曲強度和熱穩定性隨著氰酸酯濃度增加而增加,而這些特性隨著PTOH濃度的增加而降低,儲存模量表現出相似的趨勢。這個轉變溫度(Tt)隨著整體氰酸酯含量的增加而增加。這些聚合物在形狀記憶性能顯示出良好的恢復形狀,并且形狀恢復時間減少。而顯示恢復時間與形狀恢復模量增加(Eg/Er)剛好相反。這個轉變溫度可調諧反應物組成及變形恢復速度隨驅動的溫度增加而增加。這些環氧基氰酸鹽系統具有良好的熱、力學和形狀記憶特征很有希望用在智能電氣領域。
4 展望
由于SMP有著豐富的后備資源,而且形狀記憶的方式靈活,具有廣闊應用和發展前景。因此本文認為,有很多重要因素影響將SMPs技術成功轉化成生產應用,例如:標準化的不同方法描述為量化形狀記憶材料的性能。應該進一步完善形狀記憶原理,在分子結構理論和彈性形變理論基礎之上,建立形狀記憶的數學理論模型,為開發新材料奠定了理論基礎;運用分子結構理論、實驗設計原理和改性技術知識,提高形狀記憶各項性能、豐富品種、滿足不同的應用需要,增強應用和開發研究,拓寬應用領域,盡快轉化為生產力。
形狀記憶高分子與形狀記憶合金相比具有感應溫度低,且形狀記憶高分子因其獨特的優點而具有廣泛的應用前景,但是我們也應該看到在開發應用上仍存有一些不足[22]:形變回復力小;只有單程形狀記憶功能,沒有雙程性記憶和全程記憶等性能;優化制作設計與工藝,開發更多優秀的品種,在研究聚合物基的SMP中有許多重要工作需要我們一步步努力去做,在完善SMP過程中,同時要研究復合社會不同需求的產品。
參考文獻:
[1]陳義鏞.功能高分子[M].上海:上海科學技術出版社,1998:1-5.
[2]江波等.功能高分子材料的發展現狀與展望[J].石油化工動態,1998,6(2):23-27.
[3]古川淳二.對21世紀功能高分子的期待[J].聚合物文摘,1994,(6):17.
[4]Tao xie. Recent advances in polymer shape memory[J].Polymer, 2011,(52):4985-5000.
[5]Han Mo Jeong Europen polymer ourn [M].2001,(37):2245~2252.
[6]饒舟等.形狀記憶聚氨酯高分子材料的研究進展[J].聚氨酯,2011,110(7):1-7.
高分子材料的優點范文6
1 基于工作過程教學簡介
基于工作過程的課程體系,是一種以任務為驅動,以項目為載體的教學模式。高等教育的人才培養目標需突出學生綜合職業能力的培養。高校更應該結合各類企事業單位對人才的需求,參照基于工作過程的課程體系,構建基于工作過程的課程體系建設的改革發展之路。
目前,課程設計方法越來越被高職院校所重視。所謂工作過程,是指為完成工作任務并獲得工作成果而進行的一個完整的工作程序,包含若干個既相對獨立又相互聯系的工作環節。由于畢業生所對應的相關職業的工作過程特征不同,各院校的情況和辦學條件也不同,因此,引進這種課程設計方法時,在強調這種課程設計方法優點和有利條件的同時,一定要注意不同類型院校和專業存在的各自特點及不利因素。我院在進幾年的課改過程中積累了一定經驗,對課程改革有一定研究。基于工作過程的教學,以工作過程為參照系,以完成職業工作應具備的專業技術能力項目為依據,針對行動順序的每一個工作環節知識、能力要求傳授相關的課程內容,組織技能訓練,突出學生在校學習與實際工作的一致性,實現理論知識與實踐技能的整合。
2 高分子材料加工專業“工作過程”內容設計
高分子材料加工的職業能力是一種綜合能力,要求教師在教授的同時要將高分子材料常見的各種加工方法、加工手段以實踐的方式教給同學,這就需要為學生模擬真實的工作情景,通過以項目任務為依托的教學使學生置身于真實的或模擬的學習工作世界中。在教學中,每個學生會根據自身的知識結構與實際經驗,會給出不同的解決任務的方案與策略,產生的學習效果不是唯一的,而是多樣化的。讓同學在正確認識高分子材料結構和組成以及合理的配方設計基礎上,能夠選擇合適的加工設備、加工工藝和加工方法制備高分子材料制品的過程。
教學內容可以以實際的“工作任務”為依托項目。“工作內容”的設計要結合本學科前沿研究領域和發展動態,介紹重點科技成果,增加教學信息量,使課程教學內容滿足時代的要求,使學生掌握更多、更新的專業知識。教學過程通過不同的高分子材料產品項目、確定合適的加工技術及其方法。理論教學內容與實踐教學內容通過項目或者是工作任務緊密地結合在一起。課程涉及到的高分子制品成型加工典型工作任務如下圖所示:
主要是根據制品使用需求、選擇出合適的高分子材料,并進行合理的助劑選擇,進行配方設計,如不合適提出改性辦法等,為生產開發決策提供完整依據。
通過項目任務的實施,使學生能針對產品的具體要求合理的設計成型加工方案,能對所設計方案進行合理的性能分析與測試,進而掌握塑料、橡膠制品加工設計的原理與方法。為將來從事高分子材料、復合材料的生產打下堅實的基礎。
通過以下項目:“市政用木塑復合柵欄材料的成型加工”、“冰箱抽屜專用料加工設計”、“抗沖擊阻燃電視機殼專用料成型加工”、“低成本鼠標墊加工”、“聚乙烯發泡鞋底設計”、“霓虹燈管專用料設計”、“PP汽車保險杠專用料設計”、“奧運志愿微笑圈手環配方設計與制作”的實施,讓同學能夠通過能夠設計塑料產品的配方,能找出成型加工方案設計難點,提出解決方法的能力。能夠設計橡膠產品的配方,能找出成型加工設計難點,提出解決方法的能力,能夠分析測試塑料材料配方的基本性能,能夠分析測試橡膠材料的基本性能。
配合上述8個項目及相關拓展任務的訓練,組織學生討論、總結、歸納如下相關知識:了解塑料的物理性能、流動特性、成型過程中的物理、化學變化情況。了解橡膠的物理性能、流動特性、成型過程中的物理、化學變化情況。掌握常用通用塑料和通用工程塑料塑料的特性、分類以及塑料配方的組成和對應的成型加工工藝。掌握常用天然橡膠和合成橡膠的特性、分類以及橡膠配方的組成和對應的相關成型加工。 轉貼于
通過訓練讓同學以下能力得到提高:(1)培養學生自我學習,尋求探索物質之本性的興趣與能力;(2)對事物性質的分析方法—內外因分析法;(3)培養學生信息獲取的素質與能力(圖表查閱、專利、手冊、網絡資源等);(4)逐步形成綜合分析問題的素質與能力;(5)增強環境保護意識、經濟意識、安全意識;(6)專業外語單詞的學習與筑固;(7)團隊合作意識的形成。
3 “基于工作過程”教學對教師的要求
(1)專任教師實踐能力的提高。作為一線教師,在實行相關實踐教學過程中,一定要具有高分子材料加工生產的職業經驗,清楚高分子加工企業的工作過程和經營過程,只有這樣才能找出高分子材料生產的工作任務作為具有教育的項目。
(2)專業教學團隊的建立。基于工作過程的教學法涉及多學科教學內容,高分子材料加工生產需要有機械設備、加工工藝、原料配方、制品材料測試、產品檢驗等一系列知識,因此對絕大多數教師而言,很難獨自一人很好地完成教學工作。這就要求教師具有跨學科的能力,團隊協作的能力,不僅要嫻熟本學科的專業知識與技能,還要了解相鄰專業、相關學科及跨學科的知識與技能。
(3)學習情境設計能力的掌握。在本教學法中,學習情境的設計好壞決定了傳授知識結構的合理性、能否激發同學學習的興趣。如何在項目教學中合理有效的利用學習的資源和協作學習的環境是教師最主要的工作,這要求教師熟悉項目內容中所用的高分子材料的基礎知識,并準備好項目開展過程中可能涉及到的有關知識。
4 結束語
在專業課程體系中,高分子成型加工是門重要的核心課程,是高分子加工專業學生必須掌握的專業知識和技能。在老師的指導下,用工廠的管理模式,讓學生親自動手設計和制造相關高分子產品,加深領會和掌握材料加工過程工藝設計的要點以及生產工藝與實際生產之間的聯系。但以往教育方式存在著一定的不足,且與當前工廠的需求相脫節,于是筆者根據自己的教學經驗,在新的基于工作過程的教學理念指導下對高分子成型加工課程進行改革,以提高學生的學習興趣和求知欲望。
基金項目:教育部高等學校高職高專化工技術類專業教學指導委員會2009年度規劃課題,課題編號HJKT-2009-034Y;常州工程職業技術學院教育研究課題《“基于工作過程的項目化教學方法”在高分子成型加工課程改革中的應用》,課題編號:10JY022
參考文獻
[1]應力恒.基于工作過程的課程項目化教學改革[J].中國職業技術教育,2008(22).
[2]虞麗娟.深化課程體系改革提高人才創新能力[J].中國高等教育,2008(15).