前言:中文期刊網(wǎng)精心挑選了袋鼠教案范文供你參考和學(xué)習(xí),希望我們的參考范文能激發(fā)你的文章創(chuàng)作靈感,歡迎閱讀。
袋鼠教案范文1
1.使學(xué)生掌握代數(shù)式的值的概念,能用具體數(shù)值代替代數(shù)式中的字母,求出代數(shù)式的值;
2.培養(yǎng)學(xué)生準(zhǔn)確地運(yùn)算能力,并適當(dāng)?shù)貪B透特殊與一般的辨證關(guān)系的思想。
教學(xué)建議
1.重點(diǎn)和難點(diǎn):正確地求出代數(shù)式的值。
2.理解代數(shù)式的值:
(1)一個(gè)代數(shù)式的值是由代數(shù)式中字母的取值而決定的.所以代數(shù)式的值一般不是一個(gè)固定的數(shù),它會(huì)隨著代數(shù)式中字母取值的變化而變化.因此在談代數(shù)式的值時(shí),必須指明在什么條件下.如:對(duì)于代數(shù)式;當(dāng)時(shí),代數(shù)式的值是0;當(dāng)時(shí),代數(shù)式的值是2.
(2)代數(shù)式中字母的取值必須確保做到以下兩點(diǎn):①使代數(shù)式有意義,②使它所表示的實(shí)際數(shù)量有意義,如:中不能取1,因?yàn)闀r(shí),分母為零,式于無(wú)意義;如果式子中字母表示長(zhǎng)方形的長(zhǎng),那么它必須大于0.
3.求代數(shù)式的值的一般步驟:
在代數(shù)式的值的概念中,實(shí)際也指明了求代數(shù)式的值的方法.即一是代入,二是計(jì)算.求代數(shù)式的值時(shí),一要弄清楚運(yùn)算符號(hào),二要注意運(yùn)算順序.在計(jì)算時(shí),要注意按代數(shù)式指明的運(yùn)算進(jìn)行.
4。求代數(shù)式的值時(shí)的注意事項(xiàng):
(1)代數(shù)式中的運(yùn)算符號(hào)和具體數(shù)字都不能改變。
(2)字母在代數(shù)式中所處的位置必須搞清楚。
(3)如果字母取值是分?jǐn)?shù)時(shí),作乘方運(yùn)算必須加上小括號(hào),將來(lái)學(xué)了負(fù)數(shù)后,字母給出的值是負(fù)數(shù)也必須加上括號(hào)。
5.本節(jié)知識(shí)結(jié)構(gòu):
本小節(jié)從一個(gè)應(yīng)用代數(shù)式的實(shí)例出發(fā),引出代數(shù)式的值的概念,進(jìn)而通過(guò)兩個(gè)例題講述求代數(shù)式的值的方法.
6.教學(xué)建議
(1)代數(shù)式的值是由代數(shù)式里的字母所取的值決定的,因此在教學(xué)過(guò)程中,注意滲透對(duì)應(yīng)的思想,這樣有助于培養(yǎng)學(xué)生的函數(shù)觀念.
(2)列代數(shù)式是由特殊到一般,而求代數(shù)式的值,則可以看成由一般到特殊,在教學(xué)中,可結(jié)合前一小節(jié),適當(dāng)滲透關(guān)于特殊與一般的辨證關(guān)系的思想.
教學(xué)設(shè)計(jì)示例
代數(shù)式的值(一)
教學(xué)目標(biāo)
1使學(xué)生掌握代數(shù)式的值的概念,能用具體數(shù)值代替代數(shù)式中的字母,求出代數(shù)式的值;
2培養(yǎng)學(xué)生準(zhǔn)確地運(yùn)算能力,并適當(dāng)?shù)貪B透特殊與一般的辨證關(guān)系的思想。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn)和難點(diǎn):正確地求出代數(shù)式的值
課堂教學(xué)過(guò)程設(shè)計(jì)
一、從學(xué)生原有的認(rèn)識(shí)結(jié)構(gòu)提出問(wèn)題
1用代數(shù)式表示:(投影)
(1)a與b的和的平方;(2)a,b兩數(shù)的平方和;
(3)a與b的和的50%
2用語(yǔ)言敘述代數(shù)式2n+10的意義
3對(duì)于第2題中的代數(shù)式2n+10,可否編成一道實(shí)際問(wèn)題呢?(在學(xué)生回答的基礎(chǔ)上,教師打投影)
某學(xué)校為了開(kāi)展體育活動(dòng),要添置一批排球,每班配2個(gè),學(xué)校另外留10個(gè),如果這個(gè)學(xué)校共有n個(gè)班,總共需多少個(gè)排球?
若學(xué)校有15個(gè)班(即n=15),則添置排球總數(shù)為多少個(gè)?若有20個(gè)班呢?
最后,教師根據(jù)學(xué)生的回答情況,指出:需要添置排球總數(shù),是隨著班數(shù)的確定而確定的;當(dāng)班數(shù)n取不同的數(shù)值時(shí),代數(shù)式2n+10的計(jì)算結(jié)果也不同,顯然,當(dāng)n=15時(shí),代數(shù)式的值是40;當(dāng)n=20時(shí),代數(shù)式的值是50我們將上面計(jì)算的結(jié)果40和50,稱為代數(shù)式2n+10當(dāng)n=15和n=20時(shí)的值這就是本節(jié)課我們將要學(xué)習(xí)研究的內(nèi)容
二、師生共同研究代數(shù)式的值的意義
1用數(shù)值代替代數(shù)式里的字母,按代數(shù)式指明的運(yùn)算,計(jì)算后所得的結(jié)果,叫做代數(shù)式的值
2結(jié)合上述例題,提出如下幾個(gè)問(wèn)題:
(1)求代數(shù)式2x+10的值,必須給出什么條件?
(2)代數(shù)式的值是由什么值的確定而確定的?
當(dāng)教師引導(dǎo)學(xué)生說(shuō)出:“代數(shù)式的值是由代數(shù)式里字母的取值的確定而確定的”之后,可用圖示幫助學(xué)生加深印象
然后,教師指出:只要代數(shù)式里的字母給定一個(gè)確定的值,代數(shù)式就有唯一確定的值與它對(duì)應(yīng)
(3)求代數(shù)式的值可以分為幾步呢?在“代入”這一步,應(yīng)注意什么呢?
下面教師結(jié)合例題來(lái)引導(dǎo)學(xué)生歸納,概括出上述問(wèn)題的答案(教師板書(shū)例題時(shí),應(yīng)注意格式規(guī)范化)
例1當(dāng)x=7,y=4,z=0時(shí),求代數(shù)式x(2x-y+3z)的值
解:當(dāng)x=7,y=4,z=0時(shí),
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70
注意:如果代數(shù)式中省略乘號(hào),代入后需添上乘號(hào)
例2根據(jù)下面a,b的值,求代數(shù)式a2-的值
(1)a=4,b=12,(2)a=1,b=1
解:(1)當(dāng)a=4,b=12時(shí),
a2-=42-=16-3=13;
(2)當(dāng)a=1,b=1時(shí),
a2-=-=
注意(1)如果字母取值是分?jǐn)?shù),作乘方運(yùn)算時(shí)要加括號(hào);
(2)注意書(shū)寫(xiě)格式,“當(dāng)……時(shí)”的字樣不要丟;
(3)代數(shù)式里的字母可取不同的值,但是所取的值不應(yīng)當(dāng)使代數(shù)式或代數(shù)式所表示的數(shù)量關(guān)系失去實(shí)際意義,如此例中a不能為零,在代數(shù)式2n+10中,n是代數(shù)班的個(gè)數(shù),n不能取分?jǐn)?shù)最后,請(qǐng)學(xué)生總結(jié)出求代數(shù)值的步驟:①代入數(shù)值②計(jì)算結(jié)果
三、課堂練習(xí)
1(1)當(dāng)x=2時(shí),求代數(shù)式x2-1的值;
(2)當(dāng)x=,y=時(shí),求代數(shù)式x(x-y)的值
2當(dāng)a=,b=時(shí),求下列代數(shù)式的值:
(1)(a+b)2;(2)(a-b)2
3當(dāng)x=5,y=3時(shí),求代數(shù)式的值
答案:1.(1)3;(2);2.(1);(2);3..
四、師生共同小結(jié)
首先,請(qǐng)學(xué)生回答下面問(wèn)題:
1本節(jié)課學(xué)習(xí)了哪些內(nèi)容?
2求代數(shù)式的值應(yīng)分哪幾步?
3在“代入”這一步應(yīng)注意什么”
其次,結(jié)合學(xué)生的回答,教師指出:(1)求代數(shù)式的值,就是用數(shù)值代替代數(shù)式里的字母按照代數(shù)式的運(yùn)算順序,直接計(jì)算后所得的結(jié)果就叫做代數(shù)式的值;(2)代數(shù)式的值是由代數(shù)式里字母所取值的確定而確定的.
五、作業(yè)
當(dāng)a=2,b=1,c=3時(shí),求下列代數(shù)式的值:
(1)c-(c-a)(c-b);(2).
代數(shù)式的值(二)
教學(xué)目標(biāo)
1.使學(xué)生掌握代數(shù)式的值的概念,會(huì)求代數(shù)式的值;
2.培養(yǎng)學(xué)生準(zhǔn)確地運(yùn)算能力,并適當(dāng)?shù)貪B透對(duì)應(yīng)的思想.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):當(dāng)字母取具體數(shù)字時(shí),對(duì)應(yīng)的代數(shù)式的值的求法及正確地書(shū)寫(xiě)格式.
難點(diǎn):正確地求出代數(shù)式的值.
課堂教學(xué)過(guò)程設(shè)計(jì)
一、從學(xué)生原有的認(rèn)識(shí)結(jié)構(gòu)提出問(wèn)題
1.用代數(shù)式表示:(投影)
(1)a與b的和的平方;(2)a,b兩數(shù)的平方和;
(3)a與b的和的50%.
2.用語(yǔ)言敘述代數(shù)式2n+10的意義.
3.對(duì)于第2題中的代數(shù)式2n+10,可否編成一道實(shí)際問(wèn)題呢?(在學(xué)生回答的基礎(chǔ)上,教師打出投影)
某學(xué)校為了開(kāi)展體育活動(dòng),要添置一批排球,每班配2個(gè),學(xué)校另外留10個(gè),如果這個(gè)學(xué)校共有n個(gè)班,總共需多少個(gè)排球?
若學(xué)校有15個(gè)班(即n=15),則添置排球總數(shù)為多少個(gè)?若有20個(gè)班呢?
最后,教師根據(jù)學(xué)生的回答情況,指出:需要添置排球總數(shù),是隨著班數(shù)的確定而確定的;當(dāng)班數(shù)n取不同的數(shù)值時(shí),代數(shù)式2n+10的計(jì)算結(jié)果也不同,顯然,當(dāng)n=15時(shí),代數(shù)式的值是40;當(dāng)n=20時(shí),代數(shù)式的值是50.我們將上面計(jì)算的結(jié)果40和50,稱為代數(shù)式2n+10當(dāng)n=15和n=20時(shí)的值.這就是本節(jié)課我們將要學(xué)習(xí)研究的內(nèi)容.
二、師生共同研究代數(shù)式的值的意義
1.用數(shù)值代替代數(shù)式里的字母,按代數(shù)式指明的運(yùn)算,計(jì)算后所得的結(jié)果,叫做代數(shù)式的值.
2.結(jié)合上述例題,提出如下幾個(gè)問(wèn)題:
(1)求代數(shù)式2n+10的值,必須給出什么條件?
(2)代數(shù)式的值是由什么值的確定而確定的?
當(dāng)教師引導(dǎo)學(xué)生說(shuō)出:“代數(shù)式的值是由代數(shù)式
里字母的取值的確定而確定的”之后,可用圖示幫助
學(xué)生加深印象.
然后,教師指出:只要代數(shù)式里的字母給定一個(gè)確定的值,代數(shù)式就有唯一確定的值與它對(duì)應(yīng).
(3)求代數(shù)式的值可以分為幾步呢?在“代入”這一步,應(yīng)注意什么呢?
下面教師結(jié)合例題來(lái)引導(dǎo)學(xué)生歸納,概括出上述問(wèn)題的答案.(教師板書(shū)例題時(shí),應(yīng)注意格式規(guī)范化)
例1當(dāng)x=7,y=4,z=0時(shí),求代數(shù)式x(2x-y+3z)的值.
解:當(dāng)x=7,y=4,z=0時(shí),
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70.
注意:如果代數(shù)式中省略乘號(hào),代入后需添上乘號(hào).
解:(1)當(dāng)a=4,b=12時(shí),
注意(1)如果字母取值是分?jǐn)?shù),作乘方運(yùn)算時(shí)要加括號(hào);
(2)注意書(shū)寫(xiě)格式,“當(dāng)……時(shí)”的字樣不要丟;
(3)代數(shù)式里的字母可取不同的值,但是所取的值不應(yīng)當(dāng)使代數(shù)式或代數(shù)式所表示的數(shù)量關(guān)系失去實(shí)際意義,如此例中a不能為零,在代數(shù)式2n+10中,n是代數(shù)班的個(gè)數(shù),n不能取分?jǐn)?shù).
最后,請(qǐng)學(xué)生總結(jié)出求代數(shù)值的步驟:
①代入數(shù)值②計(jì)算結(jié)果
三、課堂練習(xí)
1.(1)當(dāng)x=2時(shí),求代數(shù)式x2-1的值;
2.填表:(投影)
(1)(a+b)2;(2)(a-b)2.
四、師生共同小結(jié)
首先,請(qǐng)學(xué)生回答下面問(wèn)題:
1.本節(jié)課學(xué)習(xí)了哪些內(nèi)容?2.求代數(shù)式的值應(yīng)分哪幾步?
3.在“代入”這一步應(yīng)注意什么?
其次,結(jié)合學(xué)生的回答,教師指出:(1)求代數(shù)式的值,就是用數(shù)值代替代數(shù)式里的字母,按照代數(shù)式的運(yùn)算順序,直接計(jì)算后所得的結(jié)果就叫做代數(shù)式的值;(2)代數(shù)式的值是由代數(shù)式里字母所取值的確定而確定的.
五、作業(yè)
1.當(dāng)a=2,b=1,c=3時(shí),求下列代數(shù)式的值:
2.填表
3.填表
袋鼠教案范文2
關(guān)鍵詞:案例;實(shí)施;分析;利率
一、案例背景
由于高職學(xué)生普遍缺少足夠的數(shù)學(xué)建模能力和相應(yīng)的數(shù)學(xué)建模教育,導(dǎo)致高職學(xué)生難以體驗(yàn)到數(shù)學(xué)應(yīng)用性的特點(diǎn),害怕解應(yīng)用題。而且,教材中有的應(yīng)用題與學(xué)生生活及將來(lái)的工作都不相關(guān),因而學(xué)生數(shù)學(xué)學(xué)習(xí)興趣不高。案例教學(xué)法所具備的目的性、擬真性、啟發(fā)性等特點(diǎn),能夠?yàn)閷W(xué)生提供較好的建模練習(xí),而且案例教學(xué)中提供的模型一般都具有很強(qiáng)的實(shí)際應(yīng)用性。案例教學(xué)中以學(xué)生為中心,利用情境、協(xié)作、會(huì)話等學(xué)習(xí)環(huán)境要素,充分發(fā)揮學(xué)生的主動(dòng)性、積極性和首創(chuàng)精神,最終達(dá)到能夠?yàn)榻鉀Q特定的實(shí)際問(wèn)題提供十分有效的解決方法。
二、案例呈現(xiàn)
1.學(xué)案預(yù)習(xí)
“數(shù)列在存款與貸款中的應(yīng)用”學(xué)案
數(shù)列知識(shí)在日常生活中有許多應(yīng)用,現(xiàn)在我們就用數(shù)列知識(shí)來(lái)解決銀行存款和貸款問(wèn)題。以4人組成一個(gè)學(xué)習(xí)小組,進(jìn)行討論問(wèn)題、收集信息、嘗試計(jì)算。
[知識(shí)預(yù)備]請(qǐng)寫(xiě)出等差數(shù)列和等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式。
[收集信息]銀行存款、貸款類型有幾種?它們對(duì)應(yīng)的利率是多少?
[想一想]活期的日利率是多少?零存整取月利率是多少?
[嘗試計(jì)算]2萬(wàn)元人民幣存359天活期利息是多少?2萬(wàn)元人民幣存一年定期利息是多少?
[實(shí)際應(yīng)用一]如果想五年后買10萬(wàn)元的汽車,現(xiàn)在每月存1500元夠嗎?怎么存利息多?
[實(shí)際應(yīng)用二]如果現(xiàn)在向銀行貸款10萬(wàn)元買汽車,10萬(wàn)元按月分期還款,五年還清,那么每個(gè)月應(yīng)還款多少元?(精確到1元)
[評(píng)價(jià)與小結(jié)]通過(guò)上述問(wèn)題的探究,你有什么收獲?
2.課堂實(shí)施
教師首先查看并點(diǎn)評(píng)學(xué)生學(xué)案預(yù)習(xí)情況,帶領(lǐng)學(xué)生做好學(xué)習(xí)準(zhǔn)備。
學(xué)生交流、討論學(xué)案中的問(wèn)題。教師表?yè)P(yáng)學(xué)生收集信息的能力很強(qiáng)。抽兩個(gè)學(xué)習(xí)小組到黑板上寫(xiě)出等差數(shù)列和等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式??诖疸y行存款、貸款種數(shù)及它們對(duì)應(yīng)的利率。
小組代表4:2萬(wàn)元人民幣存一年定期利息:20000×1×3.25%≈650(元)。
教師:不算不知道,一算嚇一跳。2萬(wàn)元人民幣存359天的活期利息與2萬(wàn)元人民幣存一年的定期利息相差570元。我們大家要學(xué)會(huì)理財(cái)。
教師:通過(guò)[嘗試計(jì)算],你能總結(jié)利息計(jì)算方法嗎?
小組代表5:利息=存款金額×?xí)r間×利率。
教師:回答得很好。存款利息=存款金額×?xí)r間×利率,請(qǐng)注意式子中時(shí)間與利率要一致,時(shí)間是天數(shù),利率就是日利率;時(shí)間是月數(shù),利率就是月利率;時(shí)間是年數(shù),利率就是年利率。
教師:[實(shí)際應(yīng)用一]如果想五年后買10萬(wàn)元的汽車,現(xiàn)在每月存1500元夠嗎?怎么存利息多?大家討論一下,你能說(shuō)出一種存法嗎?
小組代表6:零存整取五年。
教師:零存整取五年這個(gè)方案簡(jiǎn)單可行,你能算出現(xiàn)在每月存1500元,零存整取五年可得到本金和利息共多少嗎?本金容易計(jì)算,請(qǐng)先計(jì)算本金。
小組代表7:12×5×1500=90000(元)。
教師:每月存1500元,零存整取五年,是分成多少次存入的?每個(gè)1500元存在銀行的時(shí)間是多長(zhǎng)?每個(gè)1500元可得到的利息你會(huì)計(jì)算嗎?
小組代表8:第一個(gè)1500元存在銀行的時(shí)間是60個(gè)月,第二個(gè)1500元存在銀行的時(shí)間是59個(gè)月,依次遞減,利息=1500×月數(shù)×月利率。
教師:大家回答得很好。請(qǐng)大家一起來(lái)算出現(xiàn)在每月存1500元,零存整取五年可得到利息共多少。請(qǐng)以學(xué)習(xí)小組為單位來(lái)解決這個(gè)問(wèn)題。
小組代表9:(教師要求他用數(shù)列符號(hào)語(yǔ)言來(lái)示范此題)
教師:每月存1500元,零存整取五年可得到本金和利息共多少元?
小組代表10:本金和利息共有90000+7434.38=97434.38(元)。
教師:從中我們可以得到很多的啟示,當(dāng)我們遇到相對(duì)復(fù)雜的事情時(shí),要想辦法把它拆分成若干個(gè)相對(duì)簡(jiǎn)單的問(wèn)題進(jìn)行處理。要嘗試去做一小步,再兩小步…,從而發(fā)現(xiàn)復(fù)雜的計(jì)算是有規(guī)律的。
教師:此題還有其他存法使利息更多嗎?我們看到利息表中整存整取相對(duì)利息較高,我們可不可以先零存整取一年,再整存整???同學(xué)們課后去計(jì)算一下,下次課上比一比誰(shuí)更會(huì)理財(cái)。
教師:現(xiàn)在的年輕人都喜歡超前消費(fèi),你會(huì)選擇每月存1500元,零存整取五年可得到本金和利息近10萬(wàn)元去買車,還是從銀行貸款10萬(wàn)元買汽車,10萬(wàn)元從下個(gè)月按月分期還款五年還清,提前享受私家車?[實(shí)際應(yīng)用二]如果2013年3月5日向銀行貸款10萬(wàn)元買汽車,從下個(gè)月按月分期還款五年還清,那么每個(gè)月應(yīng)還款多少元(精確到0.1元)?工作以后是否有能力還款?
教師:貸款10萬(wàn)元,就還款10萬(wàn)嗎?
小組代表11:還要還利息錢(qián)。
教師:每個(gè)月應(yīng)還款中包括欠款金額和利息。分步計(jì)算先算什么?當(dāng)然哪個(gè)容易就先計(jì)算哪個(gè),請(qǐng)?jiān)囈辉嚒?/p>
教師:貸款利息和存款利息相似,貸款利息怎么求?聯(lián)想一下,類比一下,你能得到貸款利息計(jì)算公式嗎?
利息=欠款金額×?xí)r間×利率,仍要注意式子中時(shí)間與利率要一致,因?yàn)槊吭逻€欠款1666.67元,所以下個(gè)月欠款就變少了,欠款數(shù)在變化。貸款年利率是多少?每個(gè)月應(yīng)還欠款的利息是多少?請(qǐng)?jiān)僖詫W(xué)習(xí)小組為單位來(lái)解決這個(gè)問(wèn)題。
第一個(gè)月利息:100000×0.5%=500(元)。
第二個(gè)月還欠款和利息:1666.67+(100000-1666.67)×0.5%=2158.35(元)。
第三個(gè)月還欠款和利息:1666.67+(100000-2×1666.67)×0.5%=2150(元)。
第四個(gè)月還欠款和利息:1666.67+(100000-3×1666.67)×0.5%=2141.67(元)。
…
第n個(gè)月還欠款和利息:1666.67+[(100000-(n-1)×1666.67)]×0.5%(元)。
第61個(gè)月還欠款和利息:1666.67+0(元)。
教師:向銀行貸款10萬(wàn)元,10萬(wàn)元按月分期還款五年還清,共還款多少元?
教師:此題中數(shù)據(jù)多,計(jì)算多,我們不能埋頭計(jì)算,而要從具體計(jì)算中發(fā)現(xiàn)數(shù)列規(guī)律,學(xué)會(huì)用數(shù)學(xué)語(yǔ)言表達(dá),使我們更清楚地看到問(wèn)題中“什么變”“什么不變”,學(xué)會(huì)換角度思考問(wèn)題,把復(fù)雜的銀行存款問(wèn)題變成等差數(shù)列求和問(wèn)題來(lái)解決。
教師:通過(guò)上面的學(xué)習(xí)我們要學(xué)會(huì)用數(shù)學(xué)知識(shí)和方法解決生活中的問(wèn)題,使生活數(shù)學(xué)化,學(xué)會(huì)理財(cái),學(xué)會(huì)理性消費(fèi)。通過(guò)上述問(wèn)題的探究,你有什么收獲?存在什么問(wèn)題?請(qǐng)寫(xiě)在學(xué)案上。統(tǒng)計(jì)小組參與次數(shù)、個(gè)人參與次數(shù)。
三、案例分析
本案例首先用學(xué)案導(dǎo)學(xué),知識(shí)預(yù)備既是建立數(shù)學(xué)模型的工具,
又是學(xué)生需要驗(yàn)證和鞏固的知識(shí)。銀行存款和貸款對(duì)于現(xiàn)代的年輕人來(lái)說(shuō)是不可回避的問(wèn)題,如何理財(cái),如何合理消費(fèi)是年輕人需要掌握的知識(shí)。用“數(shù)列在存款與貸款中的應(yīng)用”案例教學(xué)貼近生活,以了解銀行利率為切入點(diǎn),引導(dǎo)學(xué)生收集銀行存款、貸款利率的有關(guān)信息,經(jīng)歷觀察問(wèn)題、發(fā)現(xiàn)問(wèn)題、探究問(wèn)題的過(guò)程,讓學(xué)生帶著問(wèn)題上課。
在課堂實(shí)施中用學(xué)案導(dǎo)學(xué),有課前學(xué)生之間的討論和交流做基礎(chǔ),教師把簡(jiǎn)單的問(wèn)題放手讓學(xué)生去做、去展示,學(xué)優(yōu)生有了展示的舞臺(tái),教師充分關(guān)注所有學(xué)生處理問(wèn)題的情況,鼓勵(lì)生生、師生之間的討論和辯論,個(gè)別指導(dǎo)學(xué)困生。
在教學(xué)前半部分,教師用梯度小的問(wèn)題引導(dǎo)學(xué)生去思考、嘗試,
學(xué)生基本能自己解決問(wèn)題。教學(xué)中教師不是告知利息計(jì)算方法,而是用問(wèn)題引導(dǎo)學(xué)生學(xué)會(huì)找規(guī)律、找關(guān)系、找模式,讓學(xué)生通過(guò)嘗試計(jì)算簡(jiǎn)單的利息問(wèn)題總結(jié)方法。在學(xué)生討論中不能放任自流,教師需要提綱挈領(lǐng)、言簡(jiǎn)意賅地加以指導(dǎo),對(duì)于易錯(cuò)點(diǎn)提醒學(xué)生注意,從而起到畫(huà)龍點(diǎn)睛的作用。
面對(duì)較為復(fù)雜的實(shí)際應(yīng)用一,要鼓勵(lì)學(xué)生敢于思考和想象,
討論中要勇于發(fā)表自己的見(jiàn)解,要在平等的氣氛中展開(kāi)討論。學(xué)生有的用列舉法,有的用歸納法,也有學(xué)生認(rèn)為自己遇到應(yīng)用題就無(wú)從下手。有些學(xué)生不敢在班級(jí)展示,在小組活動(dòng)中則比較活躍,教師創(chuàng)設(shè)民主和諧的教學(xué)氣氛,要給每位學(xué)生都留出合適的發(fā)展空間,有的學(xué)生只能找到淺層的信息,有的學(xué)生則能得出透徹的結(jié)論。即使學(xué)生的思考和回答偏離了正確答案,也不要急于評(píng)判,可以讓他們自己反省,自我更正,使學(xué)生在沒(méi)有壓力和顧忌的良好心態(tài)下進(jìn)行創(chuàng)造性的探索,嘗試計(jì)算,快的學(xué)生很快就能得到答案。
在實(shí)際應(yīng)用二中,學(xué)生沒(méi)有貸款經(jīng)歷,容易產(chǎn)生畏難情緒,但利用現(xiàn)在年輕人都喜歡超前消費(fèi)貸款買私家車的問(wèn)題情境,可激發(fā)他們的學(xué)習(xí)熱情,引導(dǎo)學(xué)生通過(guò)類比、知識(shí)遷移、觀察思考、討論、自主探索、合作學(xué)習(xí),學(xué)會(huì)理清問(wèn)題中的欠款、利息兩要素及如何抓住主要矛盾求利息,一步一步去計(jì)算,鍛煉學(xué)生做事要有條理,要有耐心,要善于觀察與發(fā)現(xiàn)規(guī)律,用列舉法或歸納法解決問(wèn)題。
利用評(píng)價(jià)與小結(jié),引導(dǎo)學(xué)生習(xí)得、提升,教師從中可以更好地了解學(xué)生,反饋教學(xué),反思教學(xué),改進(jìn)教學(xué)。
袋鼠教案范文3
關(guān)鍵詞: 數(shù)學(xué)課程 檔案袋評(píng)價(jià) 基本步驟
偉大的人民教育家陶行知先生在其智育觀中指出:“智育以養(yǎng)成思想及應(yīng)用能力為標(biāo)準(zhǔn)?!边@里的“思想”主要是指分析問(wèn)題研究問(wèn)題的思維方法,即學(xué)生自己獲取知識(shí)的能力。因此,教師對(duì)學(xué)生在知識(shí)與技能、情感態(tài)度與價(jià)值觀等方面的評(píng)價(jià)就不能僅憑對(duì)一些數(shù)字的統(tǒng)計(jì)、運(yùn)算來(lái)決定。在新課程理念下,適應(yīng)現(xiàn)代教學(xué)觀的要求,檔案袋評(píng)價(jià)在客觀反映學(xué)生在學(xué)習(xí)過(guò)程中的創(chuàng)新精神、實(shí)踐能力、合作精神、學(xué)習(xí)興趣、學(xué)習(xí)習(xí)慣等方面與傳統(tǒng)的一卷定性的評(píng)價(jià)方式相比較,具有明顯的優(yōu)勢(shì),因而已受到教育工作者的廣泛重視和認(rèn)可,并成為我國(guó)新一輪課程改革大力倡導(dǎo)的評(píng)價(jià)方法。這種評(píng)價(jià)模式改變了單一的評(píng)價(jià)主體,使學(xué)生主動(dòng)參與,有助于形成良好的評(píng)價(jià)關(guān)系,有助于教師對(duì)被評(píng)價(jià)者的數(shù)學(xué)學(xué)習(xí)過(guò)程進(jìn)行監(jiān)控和指導(dǎo),有助于幫助被評(píng)價(jià)者接納和認(rèn)同評(píng)價(jià)結(jié)果,促使其不斷改進(jìn)和發(fā)展。
一、檔案袋評(píng)價(jià)的涵義
20世紀(jì)80年代中期,美國(guó)最先將檔案袋評(píng)價(jià)運(yùn)用到教育上,成為美國(guó)教育實(shí)踐中的一種學(xué)業(yè)成就的評(píng)定方法。檔案袋評(píng)價(jià)是根據(jù)需要評(píng)定的內(nèi)容,收集、記錄學(xué)生自己、教師或同伴作出評(píng)價(jià)的有關(guān)材料,學(xué)生的作品、反思,其它相關(guān)的證據(jù)與材料,等等,以此來(lái)評(píng)價(jià)學(xué)生學(xué)習(xí)和進(jìn)步的狀況。檔案袋評(píng)價(jià)材料翔實(shí)全面、有針對(duì)性,能客觀地反映學(xué)生成長(zhǎng)的足跡。通過(guò)這種評(píng)價(jià),學(xué)生可以感受到自己的點(diǎn)滴進(jìn)步,有成就感,并能體驗(yàn)成功的喜悅,促進(jìn)其更大的進(jìn)步。這種評(píng)價(jià)是一種民主協(xié)商、主體參與的過(guò)程,而非評(píng)價(jià)者對(duì)被評(píng)價(jià)者的控制過(guò)程,學(xué)生也是評(píng)價(jià)的參與者、評(píng)價(jià)的主體。
檔案袋評(píng)價(jià)是建構(gòu)主義學(xué)習(xí)理論在教育評(píng)價(jià)上的反映。建構(gòu)主義認(rèn)為,考試成績(jī)不足以說(shuō)明學(xué)生所學(xué)到的東西,不能反映出學(xué)生每日在課堂上所進(jìn)行的活動(dòng)。學(xué)生應(yīng)在教師的幫助下多進(jìn)行自我評(píng)價(jià);學(xué)生應(yīng)就學(xué)習(xí)的結(jié)果和過(guò)程將現(xiàn)在與過(guò)去進(jìn)行比較,注意發(fā)現(xiàn)自己的進(jìn)步;學(xué)生應(yīng)在教師的幫助下編制檔案袋,以向家長(zhǎng)及其他相關(guān)人員展示自己所學(xué)到的東西。
二、檔案袋評(píng)價(jià)的特點(diǎn)
檔案袋評(píng)價(jià)與標(biāo)準(zhǔn)化考試相比,包含更多的信息。在實(shí)踐中,教師可引導(dǎo)學(xué)生自我收錄反映學(xué)習(xí)進(jìn)步的重要資料,如自己特有的解題方法,最滿意的作業(yè),印象最深的學(xué)習(xí)體驗(yàn),探究性活動(dòng)的記錄,發(fā)現(xiàn)的日常生活中的數(shù)學(xué)問(wèn)題或提出的有挑戰(zhàn)性的問(wèn)題,對(duì)解決問(wèn)題的反思,對(duì)課堂表現(xiàn)的自我評(píng)價(jià)或他人評(píng)價(jià),等等。因而,它在評(píng)定學(xué)生過(guò)程中顯示出一定的優(yōu)勢(shì):一是具有連續(xù)性;二是提供學(xué)生學(xué)習(xí)進(jìn)步方面的證據(jù);三是具有民主性,因?yàn)閷W(xué)生有權(quán)決定將什么放入檔案袋;四是具有客觀性,當(dāng)數(shù)字不能公正顯示學(xué)生的學(xué)習(xí)結(jié)果時(shí),可用檔案袋作為評(píng)定工具。
檔案袋十分注重評(píng)價(jià)過(guò)程中學(xué)生的參與。檔案袋中的材料應(yīng)讓學(xué)生自主選擇,并與教師共同制定檔案袋的評(píng)價(jià)標(biāo)準(zhǔn)。這能充分調(diào)動(dòng)學(xué)生參與學(xué)習(xí)的積極性和主動(dòng)性,促進(jìn)其潛能與創(chuàng)造性的發(fā)揮;同時(shí)也有助于培養(yǎng)學(xué)生對(duì)自己數(shù)學(xué)學(xué)習(xí)進(jìn)行監(jiān)控的能力和負(fù)責(zé)的態(tài)度,增加他們學(xué)好數(shù)學(xué)的信心。
檔案袋評(píng)價(jià)多采用形成性評(píng)價(jià)與終結(jié)性評(píng)價(jià)相結(jié)合的綜合評(píng)價(jià)方式。對(duì)于理論知識(shí)、解題技巧和相關(guān)學(xué)科知識(shí)能力評(píng)價(jià),可以選取最佳作品,它能夠更好地反映學(xué)生的實(shí)際能力;對(duì)于學(xué)習(xí)能力評(píng)價(jià),可以通過(guò)連續(xù)收集學(xué)生的作業(yè)和測(cè)試來(lái)完成。數(shù)學(xué)能力包括邏輯思維能力、空間想象能力、計(jì)算能力、分析與綜合能力等幾個(gè)方面,因而對(duì)數(shù)學(xué)課程的考核,檔案袋評(píng)價(jià)更為全面。學(xué)生可以把自己最好的、能體現(xiàn)各種數(shù)學(xué)能力的作品放入檔案袋,使評(píng)價(jià)者能夠全面、系統(tǒng)地評(píng)價(jià)學(xué)生的水平。
檔案袋評(píng)價(jià)的“自我評(píng)價(jià)”的特點(diǎn),對(duì)于數(shù)學(xué)課程也非常適用。數(shù)學(xué)能力的培養(yǎng)是循序漸進(jìn)的,檔案袋評(píng)價(jià)不僅能對(duì)學(xué)生的數(shù)學(xué)能力作出評(píng)價(jià),而且更注重學(xué)生學(xué)習(xí)和進(jìn)步的過(guò)程,通過(guò)對(duì)學(xué)生學(xué)習(xí)過(guò)程的反思,調(diào)整方向,提高學(xué)生數(shù)學(xué)水平。
三、檔案袋評(píng)價(jià)的實(shí)施
設(shè)計(jì)和制定一份好的數(shù)學(xué)課程學(xué)生學(xué)習(xí)檔案袋評(píng)價(jià)可以由以下基本步驟構(gòu)成。
1.明確評(píng)價(jià)目的和意義
學(xué)生數(shù)學(xué)學(xué)習(xí)檔案袋評(píng)價(jià)的目的主要是為了了解學(xué)生的數(shù)學(xué)學(xué)習(xí)過(guò)程,診斷在數(shù)學(xué)學(xué)習(xí)中遇到的問(wèn)題和困難,呈現(xiàn)學(xué)生數(shù)學(xué)學(xué)習(xí)的結(jié)果和進(jìn)行組際間、班級(jí)間的比較。為了使學(xué)生數(shù)學(xué)學(xué)習(xí)檔案袋能準(zhǔn)確地反映學(xué)生作品的發(fā)展歷程,培養(yǎng)學(xué)生的自我評(píng)價(jià)能力,教師要引導(dǎo)學(xué)生認(rèn)識(shí)到檔案袋中記錄的是自已在數(shù)學(xué)學(xué)習(xí)中取得進(jìn)步的足跡,而不只是收集教師要評(píng)分作品的臨時(shí)容器。教師應(yīng)通過(guò)向?qū)W生介紹檔案袋的不同功能,使學(xué)生明確檔案袋評(píng)價(jià)的目的和意義。
2.確定要收集的材料的類型
檔案袋評(píng)價(jià)的目的決定檔案袋中資料收集的類型。根據(jù)評(píng)價(jià)目的可將檔案類型分為過(guò)程型檔案、成果型檔案和評(píng)價(jià)型檔案。
過(guò)程型檔案主要用于收集學(xué)生在學(xué)習(xí)過(guò)程中的收獲、反思或遇到的問(wèn)題和困難。如在學(xué)生在學(xué)習(xí)“研究性課題:向量在物理中的應(yīng)用”這部分內(nèi)容后,教師可在檔案袋中收錄如下資料。
(1)自己或同伴收集到的與向量有關(guān)的物理學(xué)中的資料。如受力分析、順?biāo)俣取⒛嫠俣取⑽灰啤⒙烦痰雀拍睢?/p>
(2)學(xué)習(xí)向量的加減法,余弦函數(shù)的增減性,解直角三角形等內(nèi)容后,對(duì)用數(shù)學(xué)知識(shí)解決物理問(wèn)題的認(rèn)識(shí)。
(3)有關(guān)繩子受力問(wèn)題和船在水中航行問(wèn)題的探究活動(dòng)等資料(包括數(shù)學(xué)建模這一研究過(guò)程的記錄,對(duì)研究活動(dòng)的自評(píng)和他評(píng),對(duì)結(jié)論的推斷與體會(huì),問(wèn)題討論中的主要觀點(diǎn),等等)。
(4)對(duì)用數(shù)學(xué)知識(shí)解決物理問(wèn)題這一探究過(guò)程中學(xué)到的數(shù)學(xué)思想方法的認(rèn)識(shí)。
(5)對(duì)自己學(xué)習(xí)狀況的評(píng)價(jià)(包括基礎(chǔ)知識(shí)、基本技能的掌握情況,小組合作交流的情況,不明白的問(wèn)題和有待學(xué)習(xí)的問(wèn)題,以及對(duì)以后學(xué)習(xí)的設(shè)想等)。
成果型檔案主要選取一些能代表學(xué)生數(shù)學(xué)學(xué)習(xí)結(jié)果的作品。如對(duì)教師所提問(wèn)題的最佳解答;學(xué)生自主研究出的最佳數(shù)學(xué)定理、結(jié)論等;學(xué)生自已撰寫(xiě)的小論文或?qū)?wèn)題解決的最佳描寫(xiě)(描寫(xiě)問(wèn)題解決的過(guò)程),數(shù)學(xué)探究和數(shù)學(xué)建模的報(bào)告及評(píng)語(yǔ)等。
評(píng)價(jià)型檔案主要是用于對(duì)組際間、班級(jí)間的比較。如課堂上的小測(cè)試、期中期末試卷等。
3.制定調(diào)動(dòng)和指導(dǎo)學(xué)生積極參與的有效方法
(1)確定評(píng)價(jià)對(duì)象。
(2)明確評(píng)價(jià)目的。
(3)確定要收集的材料的類型。
(4)制定調(diào)動(dòng)和指導(dǎo)學(xué)生積極參與的有效方法。
(5)確定給檔案袋評(píng)分的方法。
(6)制定評(píng)價(jià)結(jié)果交流與分享的計(jì)劃。
雖然上述的工作量很大,需要教師付出更多的時(shí)間和精力,然而通過(guò)查看學(xué)生的檔案袋,教師可以更加深刻而全面地了解學(xué)生,看到很多在課堂上看不到的東西,及時(shí)了解學(xué)生學(xué)習(xí)數(shù)學(xué)的態(tài)度的轉(zhuǎn)變和取得的點(diǎn)滴進(jìn)步,取得反饋信息,調(diào)整自己的教學(xué)活動(dòng)。對(duì)教師而言,檔案袋評(píng)定就是把課程、教學(xué)與評(píng)價(jià)結(jié)合起來(lái),貫徹到日常課堂生活中去。
總而言之,評(píng)價(jià)的目的是全面考查學(xué)生的學(xué)習(xí)狀況,激勵(lì)學(xué)生的學(xué)習(xí)熱情,促進(jìn)學(xué)生的全面發(fā)展。質(zhì)性評(píng)價(jià)作為一種過(guò)程性評(píng)價(jià)并不是要否定量化的評(píng)價(jià)方法,二者應(yīng)是互補(bǔ)的關(guān)系,只有將質(zhì)性的評(píng)價(jià)方法和量化的評(píng)價(jià)方法相結(jié)合,才可以有效地描述學(xué)生的全面發(fā)展?fàn)顩r,從而促進(jìn)學(xué)生數(shù)學(xué)素質(zhì)的全面提高。
參考文獻(xiàn):
[1]周衛(wèi)勇.走向發(fā)展性課程評(píng)價(jià)――談新課程的評(píng)價(jià)改革[M].北京:北京大學(xué)出版社,2002.
[2]朱慕菊.走進(jìn)新課程――與課程實(shí)施者對(duì)話[M].北京:北京師范大學(xué)出版社,2002.
袋鼠教案范文4
關(guān)鍵詞:橡膠壩 壩袋安裝 質(zhì)量評(píng)價(jià)
中圖分類號(hào):TV644 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1672-3791(2014)02(c)-0059-02
隨著高分子合成材料工業(yè)的發(fā)展,在20世紀(jì)50年代末期,出現(xiàn)了一種新型的水工建筑物,即橡膠壩。它的骨架采用高強(qiáng)力合成纖維織物,內(nèi)外涂敷合成橡膠作粘結(jié)保護(hù)層,加工成膠布,按照所要求的尺寸,在混凝土基礎(chǔ)底板上進(jìn)行錨固,使之成封閉袋形,具有良好的密閉性,在用水、氣或者水氣混合充脹,形成擋水壩。橡膠壩具有許多優(yōu)點(diǎn):如工期短、成本低、堅(jiān)固性好、抗震性強(qiáng)、不易被海水腐蝕,因此,在我國(guó)許多中小型水利工程中,橡膠壩的使用非常廣泛。
橡膠壩設(shè)計(jì)簡(jiǎn)單,施工方便,對(duì)基礎(chǔ)底板的要求不高,因此橡膠壩技術(shù)的關(guān)鍵在于壩袋的抗拉強(qiáng)度設(shè)計(jì)、環(huán)向相對(duì)伸長(zhǎng)率、橡膠壩壩袋安裝以及施工工藝等。本文結(jié)合實(shí)際工程背景淺議橡膠壩壩袋安裝的施工技術(shù)。
1 工程背景
洛陽(yáng)市龍門(mén)二級(jí)橡膠壩改造工程位于世界文化遺產(chǎn)龍門(mén)石窟伊河鐵路橋下,原有的一級(jí)橡膠壩部分設(shè)施損壞嚴(yán)重,壩袋磨損嚴(yán)重,已不能使用。為方便景區(qū)游船通行及管理方便,改善景區(qū)環(huán)境,對(duì)二級(jí)橡膠壩進(jìn)行加高改造。本工程距龍門(mén)石拱橋下游700 m處,工程設(shè)計(jì)壩長(zhǎng)337 m,最大壩高3.5 m,最大蓄水量84.1萬(wàn) m3,可形成水面52.5 hm2(合788畝),橡膠壩回水長(zhǎng)度1.75 km,形成水盈兩岸、碧波蕩漾、水光山色的壯麗景觀。
2 橡膠壩壩袋安裝
2.1 壩袋安裝前的準(zhǔn)備工作[2]
(1)螺栓壓板錨固的施工。在預(yù)埋螺栓時(shí),可采用活動(dòng)木夾板及鋼墊板固定螺栓位置和保持螺栓的垂立狀態(tài);螺栓中心線要求成一直線,鋼墊板段間高差不大于2 mm,安裝后校測(cè)水平位置及標(biāo)高符合規(guī)定無(wú)誤后將其固定,底板完成后進(jìn)行復(fù)驗(yàn),若還有問(wèn)題,應(yīng)作緊急處理。
(2)壩袋定貨。壩袋定貨宜應(yīng)對(duì)多家生產(chǎn)廠家的業(yè)績(jī)、信譽(yù)、質(zhì)量和報(bào)價(jià)進(jìn)行比較后擇優(yōu)確定。為嚴(yán)格保證壩袋制作質(zhì)量,壩袋出廠時(shí)必須附有經(jīng)國(guó)家質(zhì)量認(rèn)證的權(quán)威檢測(cè)機(jī)構(gòu)出具具有法律效力的壩袋產(chǎn)品檢驗(yàn)報(bào)告。
(3)壩袋的質(zhì)量要求。工作人員應(yīng)按照設(shè)計(jì)的圖紙進(jìn)行壩袋及底墊片的制作,在出廠前,需要仔細(xì)檢查其尺寸,并畫(huà)出其錨固線和錨固中心線,應(yīng)在醒目位置上標(biāo)記處上下有標(biāo)記。在壩袋制作的過(guò)程中,要嚴(yán)把質(zhì)量關(guān),出廠時(shí)必須附有通過(guò)國(guó)家質(zhì)量認(rèn)證的檢測(cè)機(jī)構(gòu)出具的有關(guān)參數(shù)檢驗(yàn)報(bào)告;墊平片需要采用橡膠片,并且與壩袋厚度相同或稍后一些;在運(yùn)輸過(guò)程中,需要小心輕放,以免壩袋或者底墊片發(fā)生變形和損傷。
2.2 壩袋安裝程序
經(jīng)過(guò)壩袋安裝前的準(zhǔn)備工作,工程施工進(jìn)入壩袋安裝程序。壩袋安裝程序一般如圖1。
2.2.1 壩袋安裝
(1)安裝前的檢查工作。在進(jìn)行壩袋安裝之前,需檢查并完成以下方面:首先,建筑物砼強(qiáng)度必須達(dá)到設(shè)計(jì)要求;其次,壩袋接觸的建筑平面應(yīng)平整光滑;再次,充排管道應(yīng)該暢通,無(wú)滲漏現(xiàn)象;最后,應(yīng)該底板上標(biāo)出壩軸線、中心線。
(2)底墊片就位。對(duì)準(zhǔn)底板上的中心線和錨固線的位置將底墊片臨時(shí)固定于底板錨固槽內(nèi)和岸墻上,按設(shè)計(jì)位置開(kāi)位置安裝水帽,水帽空口處墊片的四周作補(bǔ)強(qiáng)處理,補(bǔ)強(qiáng)范圍為孔徑3倍以上;為避免止水膠片在安裝過(guò)程中移動(dòng)最好將止水膠片粘貼在底墊片上。底墊片就位后,應(yīng)在底墊片上分別劃出中心線和錨固線。
(3)壩袋就位。按先下游后上游,最后岸墻的順序進(jìn)行。先從下游底板中心線開(kāi)始,向左右兩側(cè)同時(shí)安裝,下游錨固好后,將壩袋膠布翻向下游,安裝導(dǎo)水膠管,然后再將膠布翻向上游,對(duì)準(zhǔn)上游錨固中心線,從底板中心線開(kāi)始向兩側(cè)同時(shí)安裝。錨固兩側(cè)邊墻時(shí),須將壩袋膠布掛起撐平,從下部向上部錨固。
(4)螺栓壓板錨固。第一,壓板應(yīng)保證首尾對(duì)齊,注意平整性,不平整的地方要用橡膠片墊平。第二,上緊螺帽。在緊螺帽時(shí),應(yīng)多次進(jìn)行擰緊,并進(jìn)行充水實(shí)驗(yàn),確定沒(méi)有問(wèn)題后,再次擰緊螺帽。第三,借助工具確保螺帽擰緊,一般都采用扭力扳手,按設(shè)定的扭力矩將螺栓逐個(gè)擰緊。
(5)安裝壩袋。安裝前將壩袋底板、錨固槽及墊板清掃干凈,并且用水沖洗,涼干后鋪設(shè)底板片,再安裝水帽,水帽處的底墊片應(yīng)開(kāi)孔。將底墊片和法蘭墊片夾在供排水管進(jìn)口法蘭與水帽法蘭之間,打入螺栓并裝螺帽壓緊。底墊片應(yīng)伸展,其壩袋安裝程序四周錨固處應(yīng)按螺栓位置鉆孔并套入錨固螺栓,然后將止水膠條打孔,也套入錨固螺栓并攤鋪平整。吊送壩袋入倉(cāng)并展開(kāi),先將壩袋兩端錨固腳就位,壩袋安裝工作全部完成后,應(yīng)進(jìn)行仔細(xì)檢查,無(wú)誤后方可封閉壩袋。
2.2.2 壩袋安裝檢查與驗(yàn)收
壩袋安裝后,必須進(jìn)行全面檢查。在無(wú)擋水的條件下,應(yīng)做壩袋充壩試驗(yàn);若條件許可,還應(yīng)進(jìn)行擋水試驗(yàn)。整個(gè)過(guò)程應(yīng)進(jìn)行下列項(xiàng)目的檢查[3]:(1)壩袋以及安裝處的密封性;(2)嵌固構(gòu)件的狀況檢查;(3)壩袋外觀觀測(cè)以及變形觀測(cè);(4)充排以及觀測(cè)系統(tǒng)情況;(5)充氣壩袋內(nèi)的壓力下降情況。
工程驗(yàn)收前,施工單位應(yīng)該承擔(dān)起對(duì)橡膠壩的管理與維護(hù)工作,工程竣工后,建設(shè)單位將按照相關(guān)設(shè)計(jì)標(biāo)準(zhǔn)進(jìn)行驗(yàn)收,其中壩袋應(yīng)以設(shè)計(jì)壩高為驗(yàn)收標(biāo)準(zhǔn)。
3 橡膠壩壩袋安裝質(zhì)量評(píng)價(jià)
橡膠壩壩袋的安裝質(zhì)量直接關(guān)系到攔河橡膠壩今后的運(yùn)行與管理,因此在壩袋安裝的過(guò)程中,施工單位必須保證各個(gè)工作流程的施工質(zhì)量,尤其應(yīng)注意以下幾個(gè)方面的質(zhì)量問(wèn)題[4]。
(1)在橡膠壩的壩袋安裝期間,由于是機(jī)械配合人工鋪設(shè),壩袋與底墊片之間的摩擦力較大,因此,在壩袋鋪設(shè)之前,應(yīng)在底墊片上鋪灑滑石粉,滑石粉可以降低壩袋鋪設(shè)時(shí)壩袋與底墊片之間的相互磨損,起到保護(hù)壩袋的作用。
(2)壩袋錨固是保證壩袋安裝的重要環(huán)節(jié),因此,在錨固過(guò)程中,首先應(yīng)確保其位置的準(zhǔn)確,然后需保證打孔的質(zhì)量,并滿足其精度要求。
(3)充水試驗(yàn)是檢驗(yàn)橡膠壩安裝質(zhì)量的重要環(huán)節(jié),必須在沖水試驗(yàn)成功之后在進(jìn)行封錨,這樣可以確保橡膠壩最終的安裝質(zhì)量。
(4)壩袋安裝前的各項(xiàng)準(zhǔn)備工作至關(guān)重要,必須做到周密細(xì)致,以滿足安裝過(guò)程中的精度要求,確保連續(xù)高效。
4 展望
我國(guó)的橡膠壩技術(shù)尚處于初級(jí)階段,為進(jìn)一步擴(kuò)大應(yīng)用范圍,還有很多方面需要進(jìn)一步的研究和完善,特別是以下幾個(gè)方面:(1)加大科技投入,推動(dòng)科技進(jìn)步,研究完善橡膠壩的計(jì)算理論。(2)盡快制定壩高大于5 m的橡膠壩的設(shè)計(jì)與施工規(guī)范,進(jìn)一步完善橡膠壩的設(shè)計(jì)、制造的相關(guān)質(zhì)量保證體系。(3)加快改進(jìn)橡膠壩的生產(chǎn)工藝和技術(shù),制造高強(qiáng)度、質(zhì)量輕的橡膠壩。(4)狠抓工程的施工質(zhì)量,嚴(yán)格執(zhí)行施工技術(shù)規(guī)范,做好工程的運(yùn)行管理工作,確保工程安全運(yùn)行。橡膠壩是隨著科學(xué)技術(shù)的發(fā)展而產(chǎn)生的一種新型的水工建筑物,它必將隨著的科技的發(fā)展而不斷進(jìn)步,從材料、設(shè)計(jì)、施工和管理等方面不管完善,推動(dòng)我國(guó)建筑業(yè)取得新的更高的成就。
參考文獻(xiàn)
[1] 趙又好.橡膠壩應(yīng)用研究[D].合肥工業(yè)大學(xué)碩士論文,2003.
[2] 黃順華.淺談大型橡膠壩壩袋安裝施工技術(shù)[J].浙江水利水電??茖W(xué)校學(xué)報(bào),2006.
袋鼠教案范文5
18歲的劉某(女)系福建省漳州市區(qū)商業(yè)城一女裝店?duì)I業(yè)員,在店內(nèi)打工了一年多,每天接觸到不少的營(yíng)業(yè)款,有時(shí)達(dá)十余萬(wàn)元。去年11月3日,劉某頓生邪念:老板整天忙忙碌碌的,那么多的營(yíng)業(yè)款從中偷一點(diǎn)錢(qián)他可能不會(huì)察覺(jué),何不撈一把。當(dāng)日18時(shí),劉某趁店內(nèi)無(wú)人,便將掛文胸的衣架挪到店內(nèi)攝像頭前,遮住了部分視角,而后劉某拉開(kāi)抽屜,盜取18600元營(yíng)業(yè)款。
次日,老板發(fā)現(xiàn)營(yíng)業(yè)款相差較多,便報(bào)了警。公安人員經(jīng)過(guò)調(diào)查,將懷疑對(duì)象初步認(rèn)定在劉某身上,但由于沒(méi)有確鑿的證據(jù),只好傳訊劉某。當(dāng)公安人員向她詢問(wèn)時(shí),劉某一下神色慌張了起來(lái),經(jīng)公安人員的教育,劉某最終承認(rèn)了自已的犯罪行為,并帶公安人員到她家將贓款全部取回。11月24日劉被刑事拘留,同年12月2日被逮捕。
【評(píng)析】
關(guān)于本案劉某是否構(gòu)成自首,存在兩種不同意見(jiàn)。
第一種意見(jiàn)認(rèn)為:劉某的行為不能認(rèn)定是自首。她不是主動(dòng)投案,她已被公安人員懷疑并被傳訊到案,后面主動(dòng)交代不屬投案自首,并且是在公安人員教育下才交代了犯罪事實(shí),她是被動(dòng)到案的,所以不應(yīng)視為自首,不得從輕處罰。
第二種意見(jiàn)認(rèn)為:劉某的行為可以認(rèn)定為自首。
法律依據(jù):《刑法》第六十七條規(guī)定:犯罪以后自動(dòng)投案,如實(shí)供述自己的罪行的,是自首。對(duì)于自首的犯罪分子,可以從輕或者減輕處罰。其中,犯罪較輕的,可以免除處罰。
也就是說(shuō)嫌疑人不僅要主動(dòng)投案,還需如實(shí)交代犯罪行為,這樣才能構(gòu)成自首,才能被從輕或者減輕處罰。如果單單主動(dòng)投案不如實(shí)交代不是法定的從輕情節(jié),不具有從輕處罰。
那么本案劉某雖然最終如實(shí)交代了自己的盜竊事實(shí),但其是被公安人員帶走的,能算主動(dòng)投案嗎?
根據(jù)《刑法》第六十七條第二款規(guī)定:被采取強(qiáng)制措施的犯罪嫌疑人、被告人和正在服刑的罪犯,如實(shí)供述司法機(jī)關(guān)還未掌握的本人其他罪行的,以自首論。另外,最高人民法院《關(guān)于處理自首和立功具體應(yīng)用法律若干問(wèn)題的解釋》第一條(一)規(guī)定了幾種自動(dòng)投案的情形:犯罪嫌疑人向其所在單位、城鄉(xiāng)基層組織或者其他有關(guān)負(fù)責(zé)人員投案的;犯罪嫌疑人因病、傷或者為了減輕犯罪后果,委托他人先代為投案,或者先以信電投案的;罪行尚未被司法機(jī)關(guān)發(fā)覺(jué),僅因形跡可疑,被有關(guān)組織或者司法機(jī)關(guān)盤(pán)問(wèn)、教育后,主動(dòng)交代自己的罪行的;犯罪后逃跑,在被通緝、追捕過(guò)程中,主動(dòng)投案的;經(jīng)查實(shí)確已準(zhǔn)備去投案,或者正在投案途中,被公安機(jī)關(guān)捕獲的,應(yīng)當(dāng)視為自動(dòng)投案。
劉某因被懷疑而被司法機(jī)關(guān)盤(pán)問(wèn)、教育后,主動(dòng)交代自己的罪行,符合該《解釋》“罪行尚未被司法機(jī)關(guān)發(fā)覺(jué),僅因形跡可疑,被有關(guān)組織或者司法機(jī)關(guān)盤(pán)問(wèn)、教育后,主動(dòng)交代自己的罪行的?!钡囊?guī)定,稱之為“形跡可疑型”自首,“罪行尚未被發(fā)覺(jué)”是形跡可疑型自首的前提條件之一,本案公安人員在偵查過(guò)程中沒(méi)有拿到有力證據(jù)證明劉某盜竊的事實(shí),而正是劉某的悔過(guò)自新,主動(dòng)如實(shí)交代犯罪事實(shí),才使公安機(jī)關(guān)能得以盡早破案,減少司法資源的浪費(fèi)?!督忉尅纷龀龅娜绱艘?guī)定,強(qiáng)調(diào)的是司法機(jī)關(guān)的破案價(jià)值,也符合了我國(guó)刑法規(guī)定的自首基本形態(tài)的立法目的。
綜上,根據(jù)司法解釋和法理分析,劉某的行為應(yīng)視為自動(dòng)投案。加上后面如實(shí)供述,所以應(yīng)認(rèn)定為自首,應(yīng)對(duì)其從輕處罰。
筆者同意第二種意見(jiàn)。
最后,法院判決認(rèn)定:被告人劉某以非法占有為目的,秘密竊取他人財(cái)物人民幣18600元,數(shù)額較大(漳州市區(qū)盜竊數(shù)額2萬(wàn)元為數(shù)額巨大,處刑一般三年以上),其行為已構(gòu)成盜竊罪。被告人劉某在罪行尚未被公安機(jī)關(guān)發(fā)覺(jué),僅因形跡可疑,被公安機(jī)關(guān)詢問(wèn)、教育后,主動(dòng)交代自己的罪行,視為自動(dòng)投案,并能如實(shí)供述自己的罪行,是自首,可從輕處罰。被告人系初犯、偶犯,積極配合公安機(jī)關(guān)追回贓款,具有悔罪表現(xiàn),其行為取得被害人諒解,被告人家屬自愿代其預(yù)繳納罰金,視為被告人主動(dòng)預(yù)繳納罰金,可作為量刑情節(jié)予以考慮。
綜上,法院從輕對(duì)其判處有期徒刑二年,緩刑三年。處罰金人民幣30000元。
袋鼠教案范文6
班級(jí):
姓名:
一、選擇題(5*12=60)
1.直線
,(為參數(shù))上與點(diǎn)的距離等于的點(diǎn)的坐標(biāo)是(
)
A.
B.或
C.
D.或
2.圓的圓心坐標(biāo)是
A.
B.
C.
D.
3.表示的圖形是(
)
A.一條射線
B.一條直線
C.一條線段
D.圓
4.已知直線為參數(shù))與曲線:交于兩點(diǎn),則(
)A.
B.
C.
D.
5.若直線的參數(shù)方程為,則直線的斜率為(
).
A.
B.
C.
D.
6.已知過(guò)曲線上一點(diǎn)P,原點(diǎn)為O,直線PO的傾斜角為,則P點(diǎn)坐標(biāo)是(
)
A、(3,4)
B、
C、
(-3,-4)
D、
7.曲線為參數(shù))的對(duì)稱中心(
)
A、在直線y=2x上
B、在直線y=-2x上
C、在直線y=x-1上
D、在直線y=x+1上
8.直線的參數(shù)方程為
(t為參數(shù)),則直線的傾斜角為(
)
A.
B.
C.
D.
9.曲線的極坐標(biāo)方程化為直角坐標(biāo)為(
)
A.
B.
C.
D.
10.曲線的參數(shù)方程為(t是參數(shù)),則曲線是(
)
A、線段
B、直線
C、圓
D、射線
11.在極坐標(biāo)系中,定點(diǎn),動(dòng)點(diǎn)在直線上運(yùn)動(dòng),當(dāng)線段最短時(shí),動(dòng)點(diǎn)的極坐標(biāo)是
A.
B.
C.
D.
12.在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.若直線與圓相切,則實(shí)數(shù)的取值個(gè)數(shù)為(
)
A
.0
B.1
C.2
D.3
二、填空題(5*4=20)
13.(坐標(biāo)系與參數(shù)方程選做題)極坐標(biāo)系下,直線與圓的公共點(diǎn)個(gè)數(shù)是________;
14.在極坐標(biāo)系中,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的一個(gè)極坐標(biāo)為_(kāi)____.
15.已知圓M:x2+y2-2x-4y+1=0,則圓心M到直線(t為參數(shù))的距離為
.
16.(選修4-4:坐標(biāo)系與參數(shù)方程)曲線,極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的單位長(zhǎng)度,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸)中,直線被曲線C截得的線段長(zhǎng)為
.
三、解答題
17.(本小題滿分10分)已知在平面直角坐標(biāo)系中,直線的參數(shù)方程是(是參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程.
(Ⅰ)判斷直線與曲線的位置關(guān)系;
(Ⅱ)設(shè)為曲線上任意一點(diǎn),求的取值范圍.
18.(本小題滿分12分)在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρsin(θ+)=a,曲線C2的參數(shù)方程為
(φ為參數(shù),0≤φ≤π).
(1)求C1的直角坐標(biāo)方程;
(2)當(dāng)C1與C2有兩個(gè)不同公共點(diǎn)時(shí),求實(shí)數(shù)a的取值范圍.
19.(本小題滿分12分)已知曲線,直線(t為參數(shù)).
(1)寫(xiě)出曲線C的參數(shù)方程,直線的普通方程;
(2)過(guò)曲線C上任意一點(diǎn)P作與夾角為30°的直線,交于點(diǎn)A,求|PA|的最大值與最小值.
20.(本小題滿分12分)在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系下,圓的方程為.
(Ⅰ)求直線的普通方程和圓的圓心的極坐標(biāo);
(Ⅱ)設(shè)直線和圓的交點(diǎn)為、,求弦的長(zhǎng).
21.(本小題滿分12分)極坐標(biāo)系與直角坐標(biāo)系有相同的長(zhǎng)度單位,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù),),射線與曲線交于(不包括極點(diǎn)O)三點(diǎn)
(1)求證:;
(2)當(dāng)時(shí),B,C兩點(diǎn)在曲線上,求與的值
22.(本小題滿分12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)中,圓的方程為.
(1)寫(xiě)出直線的普通方程和圓的直角坐標(biāo)方程;
(2)若點(diǎn)坐標(biāo)為,圓與直線交于,兩點(diǎn),求的值.
參考答案
1.D
【解析】
試題分析:
設(shè)直線
,(為參數(shù))上與點(diǎn)的距離等于的點(diǎn)的坐標(biāo)是,則有
即,所以所求點(diǎn)的坐標(biāo)為或.
故選D.
考點(diǎn):兩點(diǎn)間的距離公式及直線的參數(shù)方程.
2.A
【解析】
試題分析:
,圓心為,化為極坐標(biāo)為
考點(diǎn):1.直角坐標(biāo)與極坐標(biāo)的轉(zhuǎn)化;2.圓的方程
3.A
【解析】
試題分析:,表示一和三象限的角平分線,表示第三象限的角平分線.
考點(diǎn):極坐標(biāo)與直角坐標(biāo)的互化
4.D
【解析】
試題分析:將直線化為普通方程為,將曲線化為直角坐標(biāo)方程為,即,所以曲線為以為圓心,半徑的圓.
圓心到直線的距離.
根據(jù),解得.故D正確.
考點(diǎn):1參數(shù)方程,極坐標(biāo)方程與直角坐標(biāo)方程間的互化;2直線與圓的相交弦.
5.B
【解析】
試題分析:由直線的參數(shù)方程知直線過(guò)定點(diǎn)(1,2),取t=1得直線過(guò)(3,-1),由斜率公式得直線的斜率為,選B
考點(diǎn):直線的參數(shù)方程與直線的斜率公式.
6.D
【解析】
試題分析:直線PO的傾斜角為,則可設(shè),
代入點(diǎn)P可求得結(jié)果,選B。
考點(diǎn):橢圓的參數(shù)方程
7.B
【解析】
試題分析:由題可知:,故參數(shù)方程是一個(gè)圓心為(-1,2)半徑為1的圓,所以對(duì)稱中心為圓心(-1,2),即(-1,2)只滿足直線y=-2x的方程。
考點(diǎn):圓的參數(shù)方程
8.C
【解析】
試題分析:由參數(shù)方程為消去可得,即,所以直線的傾斜角滿足,所以.故選C.
考點(diǎn):參數(shù)方程的應(yīng)用;直線傾斜角的求法.
9.B.
【解析】
試題分析:,,又,,,即.
考點(diǎn):圓的參數(shù)方程與普通方程的互化.
10.D
【解析】
試題分析:消去參數(shù)t,得,故是一條射線,故選D.
考點(diǎn):參數(shù)方程與普通方程的互化
11.B
【解析】
試題分析:的直角坐標(biāo)為,線段最短即與直線垂直,設(shè)的直角坐標(biāo)為,則斜率為,,所以的直角坐標(biāo)為,極坐標(biāo)為.故選B.
考點(diǎn):極坐標(biāo).
12.C
【解析】
試題分析:圓的普通方程為,直線的直角坐標(biāo)方程為,因?yàn)橹本€與圓相切,所以圓心到直線的距離等于圓的半徑,即,故選.
考點(diǎn):1.極坐標(biāo)與參數(shù)方程;2.直線與圓的位置關(guān)系.
13.
【解析】
試題分析:直線平面直角坐標(biāo)方程為,圓的平面直角坐標(biāo)方程為,此時(shí)圓心到直線的距離,等于圓的半徑,所以直線與圓的公共點(diǎn)的個(gè)數(shù)為個(gè).
考點(diǎn):曲線的極坐標(biāo)方程與平面直角坐標(biāo)方程的轉(zhuǎn)換,圓與直角的位置關(guān)系.
14.(或其它等價(jià)寫(xiě)法)
【解析】
試題分析:轉(zhuǎn)化為直角坐標(biāo),則關(guān)于直線的對(duì)稱點(diǎn)的對(duì)稱點(diǎn)為,再轉(zhuǎn)化為極坐標(biāo)為.
考點(diǎn):1.
極坐標(biāo);2.點(diǎn)關(guān)于直線對(duì)稱.
15.2
【解析】
試題分析:由于圓M的標(biāo)準(zhǔn)方程為:,所以圓心,
又因?yàn)橹本€(t為參數(shù))消去參數(shù)得普通方程為,
由點(diǎn)到直線的距離公式得所求距離;
故答案為:2.
考點(diǎn):1.化圓的方程為標(biāo)準(zhǔn)方程;2.直線的參數(shù)方程化為普通方程;3.點(diǎn)到直線的距離公式.
16.
【解析】
試題分析:將曲線化為普通方程得知:曲線C是以(2,0)為圓心,2為半徑的圓;
再化直線的極坐標(biāo)方程為直角坐標(biāo)方程得,
所以圓心到直線的距離為;
故求弦長(zhǎng)為.
所以答案為:.
考點(diǎn):坐標(biāo)系與參數(shù)方程.
17.(Ⅰ)直線與曲線的位置關(guān)系為相離.(Ⅱ).
【解析】
試題分析:(Ⅰ)轉(zhuǎn)化成直線
的普通方程,曲線的直角坐標(biāo)系下的方程,即研究直線與圓的位置關(guān)系,由“幾何法”得出結(jié)論.
(Ⅱ)根據(jù)圓的參數(shù)方程,設(shè),轉(zhuǎn)化成三角函數(shù)問(wèn)題.
試題解析:(Ⅰ)直線
的普通方程為,曲線的直角坐標(biāo)系下的方程為,圓心到直線的距離為
所以直線與曲線的位置關(guān)系為相離.
(Ⅱ)設(shè),則.
考點(diǎn):1.簡(jiǎn)單曲線的極坐標(biāo)方程、參數(shù)方程;2.直線與圓的位置關(guān)系;3.三角函數(shù)的圖象和性質(zhì).
18.(1);(2).
【解析】
試題分析:(1)首先根據(jù)兩角和的正弦公式展開(kāi),然后根據(jù)直角坐標(biāo)與極坐標(biāo)的互化公式,進(jìn)行化簡(jiǎn),求直角坐標(biāo)方程;(2)消參得到圓的普通方程,并注意參數(shù)的取值方范圍,取得得到的是半圓,當(dāng)半圓與直線有兩個(gè)不同交點(diǎn)時(shí),可以采用數(shù)形結(jié)合的思想確定參數(shù)的范圍.表示斜率為的一組平行線,與半圓有兩個(gè)不同交點(diǎn)的問(wèn)題.
試題解析:(1)將曲線C1的極坐標(biāo)方程變形,
ρ(sinθ+cosθ)=a,
即ρcosθ+ρsinθ=a,
曲線C1的直角坐標(biāo)方程為x+y-a=0.
(2)曲線C2的直角坐標(biāo)方程為(x+1)2+(y+1)2=1(-1≤y≤0),為半圓弧,
如圖所示,曲線C1為一組平行于直線x+y=0的直線
當(dāng)直線C1與C2相切時(shí),由得,
舍去a=-2-,得a=-2+,
當(dāng)直線C1過(guò)A(0,-1)、B(-1,0)兩點(diǎn)時(shí),a=-1.
由圖可知,當(dāng)-1≤a
考點(diǎn):1.極坐標(biāo)與直角坐標(biāo)的互化;2.參數(shù)方程與普通方程的互化;3.?dāng)?shù)形結(jié)合求參數(shù)的范圍.
19.(1)(θ為參數(shù)),
(2)最大值為,最小值為.
【解析】
試題分析:第一問(wèn)根據(jù)橢圓的參數(shù)方程的形式,將參數(shù)方程寫(xiě)出,關(guān)于直線由參數(shù)方程向普通方程轉(zhuǎn)化,消參即可,第二問(wèn)根據(jù)線段的長(zhǎng)度關(guān)系,將問(wèn)題轉(zhuǎn)化為曲線上的點(diǎn)到直線的距離來(lái)求解.
試題解析:(1)曲線C的參數(shù)方程為(θ為參數(shù)).直線的普通方程為.
(2)曲線C上任意一點(diǎn)到的距離為,
則,其中為銳角,且.
當(dāng)時(shí),|PA|取得最大值,最大值為.
當(dāng)時(shí),|PA|取得最小值,最小值為.
考點(diǎn):橢圓的參數(shù)方程,直線的參數(shù)方程與普通方程的轉(zhuǎn)換,距離的最值的求解.
20.(Ⅰ)的普通方程為,圓心;(Ⅱ).
【解析】
試題分析:(Ⅰ)消去參數(shù)即可將的參數(shù)方程化為普通方程,在直角坐標(biāo)系下求出圓心的坐標(biāo),化為極坐標(biāo)即可;(Ⅱ)求出圓心到直線的距離,由勾股定理求弦長(zhǎng)即可.
試題解析:(Ⅰ)由的參數(shù)方程消去參數(shù)得普通方程為
2分
圓的直角坐標(biāo)方程,
4分
所以圓心的直角坐標(biāo)為,因此圓心的一個(gè)極坐標(biāo)為.
6分
(答案不唯一,只要符合要求就給分)
(Ⅱ)由(Ⅰ)知圓心到直線的距離,
8分
所以.
10分
考點(diǎn):1.參數(shù)方程與普通方程的互化;2.極坐標(biāo)與直角坐標(biāo)的互化.
21.(1)見(jiàn)解析(2)
【解析】
試題分析:(1)利用極坐標(biāo)方程可得
計(jì)算可得;(2)將
B,C兩點(diǎn)極坐標(biāo)化為直角坐標(biāo),又因?yàn)榻?jīng)過(guò)點(diǎn)B,C的直線方程為可求與的值
試題解析:(1)依題意
則
+4cos
=+=
=
(2)當(dāng)時(shí),B,C兩點(diǎn)的極坐標(biāo)分別為
化為直角坐標(biāo)為B,C
是經(jīng)過(guò)點(diǎn)且傾斜角為的直線,又因?yàn)榻?jīng)過(guò)點(diǎn)B,C的直線方程為
所以
考點(diǎn):極坐標(biāo)的意義,極坐標(biāo)與直角坐標(biāo)的互化
22.(1)直線的普通方程為;;(2).
【解析】
試題分析:(1)首先聯(lián)立直線的參數(shù)方程并消去參數(shù)即可得到其普通方程,然后運(yùn)用極坐標(biāo)與直角坐標(biāo)
轉(zhuǎn)化公式將圓轉(zhuǎn)化為直角坐標(biāo)方程即可;(2)首先將直線的參數(shù)方程直接代入圓的直角坐標(biāo)方程,
并整理得到關(guān)于參數(shù)的一元二次方程,由韋達(dá)定理可得,最后根據(jù)直線的參數(shù)方程的幾何
意義即可求出所求的值.
試題解析:(1)由得直線的普通方程為
又由得圓C的直角坐標(biāo)方程為,即.
(2)把直線的參數(shù)方程代入圓的直角坐標(biāo)方程,得,即