国产一区二区三精品久久久无广告,中文无码伦av中文字幕,久久99久久99精品免视看看,亚洲a∨无码精品色午夜

斬草除根范例6篇

前言:中文期刊網(wǎng)精心挑選了斬草除根范文供你參考和學習,希望我們的參考范文能激發(fā)你的文章創(chuàng)作靈感,歡迎閱讀。

斬草除根范文1

今天,天氣晴朗我們班經(jīng)過校長允許,準備到草坪里去把那些野的根拔起來。前一天宋老師還專門通知我們帶了一根筷子。

上午第四節(jié),我們來到花園,學著老師的樣子把野草的根拔了起來。先找到野草 ,然后筷子輕輕的把土撬松,一邊撬一邊就往上拉。 可由于我們是第一次學動作慢,一會不是把根拉斷,就是撬不動土。有些野草的根實在太長了,只得請老師來幫忙,老師輕輕松松的就的就把那些很長的根一一拔了出來。有一次一根太長了的根我拔不起來,正準被備去找老師,那一邊的同學又把老師叫了過去,我想先自己拔著吧。可是拔了好久都拔不起來,我有些氣餒了,可又看見許多同學也拔不起來,可是他們還在拔,我又蹲下身子拔了起來,最后功夫不負有心人,我終于拔了起來。

通過這件事我明白了,做什么事都要有信心和恒心!

斬草除根范文2

[關鍵詞]艾滋病;民間組織;發(fā)展現(xiàn)狀;組織結構;趨勢

[中圖分類號]C30

[文獻標識碼]A [文章編號]1672-2426(2009)09-0063-03

一、調(diào)查工作情況

調(diào)查對象、類型、數(shù)目:本次調(diào)查樣本總計為35個民間組織,以男同志組織居多,計17個,接近半數(shù);感染者組織居次,8個;性工作者關愛組織3個;其他組織7個。

調(diào)查方法:由于研究對象的敏感性,不便于實行公開的集體性的問卷調(diào)查。主要通過實地考察、個人約談,輔之以電話訪談等方法。對調(diào)查材料進行交互性驗證和描述性分析。

二、調(diào)查的初步認識

1 防艾草根組織的發(fā)展現(xiàn)狀。前期對低流行區(qū)防艾草根組織調(diào)查發(fā)現(xiàn),至2007年8月,防艾草根組織已經(jīng)發(fā)展至94家,相比2006年7月增加了58家。其特點如下:

其一,組織數(shù)量迅速增加,地區(qū)差異明顯。近些年,我國低流行區(qū)防艾草根組織的總體數(shù)量迅速增加。在調(diào)查的七個省(自治區(qū)、直轄市)中。防艾草根組織數(shù)量均有不同程度的增多。其中黑龍江防艾草根組織數(shù)量增加最多,山2006年的8個增加到2007年的30個;寧夏和遼寧防艾草根組織數(shù)量增加最少,分別由2006年的2個和14個增加到2007年的3個和15個。

就發(fā)展水平而言,地區(qū)間也不平衡。有些地區(qū)建立組織較早,發(fā)展的較為成熟,如遼寧、黑龍江;有些地區(qū)則相對落后,即有的組織都是近兩年才成立,尚處在初建階段,如內(nèi)蒙古、寧夏。組織類型發(fā)展也不平衡,相對而言,同志組織發(fā)展領先于其他組織。但總體上表現(xiàn)出良性的發(fā)展態(tài)勢,在防治艾滋病的事業(yè)中發(fā)揮出重要作用。

其二,組織類型不斷豐富,各類型組織所占比例變化不大。通過調(diào)查發(fā)現(xiàn),經(jīng)過一年的發(fā)展,防艾草根組織的類型不斷豐富,出現(xiàn)了一些新型組織,例如流動人群組織和男性工作者(MB)組織等。各類型防艾草根組織的數(shù)量變化如下:同性戀(MSM)組織由2006年的24個增加到2007年的60個;感染者組織(PLWHA)由2006年的5個增加到2007年的14個;性工作者(sw)組織由2006年的1個增加到2007年的6個;流動人群組織由2006年的0個增加到2007年的7個:其他由2006年的6個增加到2007年的8個。

其三,組織活動能力增強,對項目依賴程度變大。通過觀察發(fā)現(xiàn),近幾年在國內(nèi)外相關項目的大力支持下,我國防艾草根組織在組織資源動員能力上不斷增強,呈現(xiàn)出不同的組織發(fā)展程度。依據(jù)防艾草根組織的年資源動員能力不同,可以將防艾草根組織分為三個發(fā)展層級(如表1)。

此外,相關調(diào)查顯示,防艾草根組織的收入大部分來自于境外機構、企業(yè)和個人捐贈和政府資助,通過收費等活動獲得的收入極少;有時靠組織負責人的個人出資。可見,防艾草根組織自身的生存能力較弱,對外部資助的依賴性比較大。

綜上,雖然近些年我國防艾草根組織在數(shù)量、能力方面均有不同程度的增強,但總體上還處于起步階段。尤其是近一年來,新成立的草根組織數(shù)量增多(調(diào)查中新增組織數(shù)量占現(xiàn)有組織數(shù)量的61.7%),其發(fā)展時間短、程度低,且對項目的依賴性大。基于此種情況,大多數(shù)防艾草根組織還是運作型組織,即自己籌資,自己開展項目。甚至部分組織長期處于間斷運作的狀態(tài)。

2 防艾草根組織的共性特征。通過面上調(diào)查和實地訪談,我們確認,作為將防治艾滋病作為組織宗旨和主要活動內(nèi)容的直接面對特殊人群的民間組織,防艾草根組織具有草根組織的共性特征:

其一,注冊組織數(shù)量少,多數(shù)組織未注冊。防艾草根組織注冊方式多為工商注冊,民政注冊的很少,更多的組織尚未注冊。

其一二,組織規(guī)模小,活動范圍以本地為主。調(diào)查顯示,防艾草根組織的核心成員數(shù)量在1-15人。受組織發(fā)展程度的制約,多數(shù)防艾草根組織的組織活動范圍以組織所在市為主,少數(shù)組織擴展到組織所在省或相鄰省。

其三,組織活動對項目的依賴性大,多數(shù)組織開展活動的資金來源以項目經(jīng)費為主。

3 防艾草根組織的組織結構。針對不同目標人群的防艾草根組織按照發(fā)展程度可分為三類:即自助型組織、服務型組織和政策倡導型組織。不同發(fā)展程度的防艾革根組織在組織構建和人力資源構成上都柯不同程度的差異。

其一,雛形期的組結構。該類組織結構極其簡單、不成熟,為多數(shù)組織能力小,社區(qū)基礎薄弱的自助型組織所采用。組織成員一般由組織負責人和個別的志愿者構成,領導者向下直接面對志愿者,運行方式通常為組織負責人的決策制定和組織志愿者的具體執(zhí)行。

其二,發(fā)展期的組織結構。與雛形期的組織結構相比,發(fā)展期的組織結構是其發(fā)展的方向,也是許多被調(diào)查的防艾草根組織現(xiàn)在使用的組織結構形式。在該類組織結構中,組織負責人改變了直接面對志愿者的狀況,可以通過少數(shù)固定的核心成蹦執(zhí)行自己的決策。志愿者在組織中的主要任務是輔助核心成員執(zhí)行組織負責人決策,進行相關的活動。

其三,成熟期的組織結構。政策倡導型組織多采用成熟期的組織結構進行管理。對于政策倡導型組織,其經(jīng)過了起步階段和發(fā)展階段后組織能力不斷增強,也吸引了一定數(shù)量的專職人員加入組織,并參與組織的管理工作。從組織調(diào)查和相關人員訪談信息來看,該類組織的管理結構也是目前比較完善且受到較多認可的組織結構形式。在該類組織結構中,組織負責人不再直接面對具體的活動執(zhí)行人員,而是在組織專職人員中選出一名綜合能力較強的人作為協(xié)調(diào)員,由其具體負責向成員下達組織負責人決策并組織實施。同時,組織負責人也指派了專人負責組織信息和經(jīng)費管理。

4 人員構成與利益相關者。從前述組織結構可見,防艾草根組織的人員構成主要有=三類:組織負責人、項目組核心成員和志愿者。

其一,組織負責人。組織負責人是防艾草根組織的靈魂,多為組織的發(fā)起者,其領導能力和綜合素質(zhì)對防艾草根組織項目管理具有決定性影響。

其二,項目組核心成員。項目組織核心成員指負責人之外在組織中承擔一定管理職務的人員,包括專職和兼職管理人員,如協(xié)調(diào)員、信息管理員和經(jīng)費管理員等。由于防艾草根組織不能利

用高薪來吸引人才,且工資的提供又有很大的彈性(收入往往以固定補助或具體活動補助的形式發(fā)放),所以組織中的專業(yè)人員和專職人員的比例也小大。

其三,志愿者。志愿者是防艾草根組織開展項目的重要支柱。所有組織均是志愿者的數(shù)量比組織自身成員數(shù)量多,志愿者在組織內(nèi)部扮演的角色多是具體任務的執(zhí)行者的角色,且流動性大。與組織(尤其是組織負責人)間發(fā)生矛盾的情況也時有發(fā)生,影響了防艾草根組織管理工作的正常進行。這也是很多防艾草根組織在志愿者管理方面的困擾所在。

防艾草根組織的利益相關者主要是:

其一,政府機構。政府機構與防艾草根組織的關系應該是補充與互助的關系。政府機構作為社會管理的主體,為防艾草根組織提供政策和資源,尤其是以疾病預防控制中心和醫(yī)療機構為代表的衛(wèi)生部門為防艾草根組織提供可靠的、高治療的技術支持;當然,防艾草根組織也會在一定程度上影響和加速政府的政策制定和態(tài)度轉(zhuǎn)變過程。

其二,目標人群。目標人群是指在疾病檢測、預防或控制中,為達到預期目標而對其進行檢測、預防或干預的靶人群。在艾滋病防治中,目標人群主要包括HIV感染者和艾滋病病人、受HIV/AIDS影響的人群以及HIV/AIDS易感人群。

其三,資助方。資助方通常有國家、省市等各級政府、國際機構(如聯(lián)合國艾滋病規(guī)劃署、世界銀行和不同國家的政府)、國際非政府組織(如樂施會、救助兒童會)、國內(nèi)基金會和研究機構等。資助方與民間組織應當是平等合作的關系,資助方通過提供資金、技術等方式為防艾草根組織提供各種資源,防艾草根組織通過相應的項目活動實現(xiàn)資助方的組織意愿,但事實上雙方并不平等,資助方往往更為強勢。

其四,合作方。防艾草根組織的合作方為組織發(fā)展提供了多方面的支持,包括進行項目申請、實施、評估等工作。例如酒吧老板、教育研究機構等。合作方通過參與防艾草根組織管理活動實現(xiàn)自己的目標,例如間接提高經(jīng)濟效益、滿足資源需求等。

其五,競爭伙伴,對于某一特定的防艾草根組織而言,其競爭伙伴通常指與該組織處于同一地區(qū)、服務人群相同或相近的其他組織。當面對相同的潛在資源時,防艾草根組織與競爭伙伴之間表現(xiàn)為競爭關系,一個組織對資源的占有必然意味著對其他組織可利用資源的剝奪;當面對政府、市場時,防艾草根組織與競爭伙伴之間表現(xiàn)為合作關系,彼此通過經(jīng)驗交流、信息共享等可以相互促進、共同發(fā)展,以實現(xiàn)提升服務人群的整體生存狀況。

其六,組織成員和志愿者。

三、防艾草根組織的發(fā)展路徑與模式

1 生成路徑。從革根組織成立的機緣與生成路徑看,可以大體概括出幾種模式:一是社群人士自發(fā)組建或由其他組織分化而來,可稱內(nèi)生模式,如心連心,陽光家園,愛心天空網(wǎng)站等。二是社群外愛心人士或公益機構組建,可稱外生模式,如向日葵工作組、愛心島等。三是疾控(項目辦)或衛(wèi)生機構出于工作或項目考慮出面組建,可稱疾控模式,如真愛家園,牧人敖包工作室。疾控模式亦屬外生模式,但自己的特點明晰,與其他外生組織有很大區(qū)別,所以作為單獨一種模式。

不同生成模式對后來的發(fā)展與活動開展有很大影響。內(nèi)生模式,有較大的社群號召力,環(huán)境適應性,可持續(xù)發(fā)展能力強,適于開展干預工作,工作的滲透力和效果亦強,但相對封閉,社會認知度不高。疾控模式與疾控等資助機構親近,關系和諧,得到專業(yè)技術支持和項目資金比較直接,活動條件和組織發(fā)展的資源在防艾專項領域和特定時間周期內(nèi)較有保證,但組織目標集中。對疾控和項目的依附性和依賴性強,工作的自主性低,往往受制于疾控人員和項目方的干預控制。社群外模式與社會公益力量更近,開放性強透明度高,易于得到社會的理解認同,但在社群開展活動的深度有限,往往為配合疾控工作或社群組織的項目而開展活動。適于從事一般性的宣傳工作和倡導活動,做社群與社會之間的溝通。

不論何種生成模式,這些組織在建立、發(fā)展過程中都得到疾控或其他衛(wèi)生機構如醫(yī)院、醫(yī)學院等的支持幫助,專業(yè)衛(wèi)生醫(yī)務人員直接或間接發(fā)揮作用。在社群人士未及參與之時,甚至直接出面建立組織。這些組織與特定社群及服務對象建立了相應的工作關系,在一定范圍內(nèi)取得了社群和社會的理解、認同,具備進一步發(fā)展的基礎。

2 地方特征。值得注意的是,在不同地區(qū),組織發(fā)展模式呈現(xiàn)明顯的差別,模式與地區(qū)有很強的關連性。

東北三省的草根組織發(fā)展模式,主要是“自下而上”的內(nèi)生式。以同志草根組織為例,早期成立的組織是由社群中經(jīng)常接觸的一些活躍分子發(fā)起的,他們大多自我認同良好、性格開朗、交往能力強、富于同情心。成立組織的目的是為了保護這個社群成員的健康。基于對本群體的了解、理解和關懷,起初他們自籌資金搞防艾工作,逐漸地在防艾領域有了聲望,常常配合疾控和紅會完成一些工作。由于工作范圍和組織規(guī)模的擴大,依靠組織成員自籌資金是不現(xiàn)實的,很難維持組織的繼續(xù)運行。這就促使草根組織從其他方面尋找資金,如申請項目支持。

在內(nèi)蒙古、甘寧地區(qū),草根組織發(fā)展模式的特點是“自上而下”的疾控式。從組織的成立到組織的運行,大都在疾控的促進領導下進行的。具體體現(xiàn)在:

首先,該地區(qū)的防艾工作是隨著有關項目的出現(xiàn)而開始的。據(jù)了解,2006年國家有關防艾項目覆蓋到,促使當?shù)丶部丶哟笤诜腊I域的關注與投入。如疾控、呼和浩特市疾控分別設立了專門的辦公室,安排專人負責防艾項目。

其次,該地區(qū)的草根組織是在疾控的動員和支持下成立的。為了能利用項目資金開展防艾工作,疾控深入調(diào)查并挖掘潛在的草根組織,以及有意愿成立組織的特殊群體中的人員,鼓勵和支持他們成立小組。如陽光工作組就是在疾控的動員和支持下成立的,主要從事MSM人群的防艾工作。至今已經(jīng)運行兩年多了,組織規(guī)模在不斷擴大,艾滋病的干預范圍在擴大,在防艾領域發(fā)揮的作用越來越明顯了。

第三,該地區(qū)草根組織是在疾控主導下運行的。這一點在財務上體現(xiàn)的最為明顯。在訪談中我們了解到,有些項目資金是由疾控托管的,草根組織執(zhí)行防艾工作所需要的資金經(jīng)常要自己先行墊付,之后拿票據(jù)去疾控報銷,而且財務報銷流程相當繁瑣,常常阻礙工作的進行。就連外展所需要的資料與物品,也都由疾控全權辦置。用小組人員的話說,就是“項目從開始到最后,我們都看不到錢。我們需要什么,就跟疾控申請,由它們代購代辦。”其實,在項目的執(zhí)行過程中,很多環(huán)節(jié)都是機動靈活的,小組應該根據(jù)具體情況做適當?shù)卣{(diào)整。然而,如此硬性的資金管理制度,無疑造成了項目執(zhí)行的效率低下,

不利于小組工作的順利開展。

從上述的發(fā)展模式中,我們可以看到主觀和客觀兩個方面的因素在共同起作用。首先是社群中的人員有成立組織服務于本社群的意識,這種主動性是組織發(fā)展壯大的關鍵因素之一。其次是客觀條件促進。僅有艾防意識并不夠,還須有資金支持。像GF5(即全球基金第五輪防艾項目)項目、疾控和國家的一些項目都為草根組織提供了有利條件。比如位于北部邊疆,其經(jīng)濟發(fā)展相對落后,人們的思想意識也相對保守。這應該是內(nèi)蒙古沒有自發(fā)成立的草根組織的主要原因。由于GF5項目覆蓋到,疾控才動員社群人員成立草根組織來申請并執(zhí)行項目。可以說是項目推動了草根組織的產(chǎn)生,為了項目而成立組織。為項目而項目,為項目而組織,這樣的主觀認知顯然不具有可持續(xù)性,但這又是內(nèi)蒙古革根組織發(fā)展的必經(jīng)階段。草根組織將來發(fā)展如何,關鍵取決于觀念的轉(zhuǎn)變,就是要正確理解組織存在目的和意義。

另外,組織發(fā)展還有一種增值一分裂增長模式。如呼市同心工作組的負責人不到30歲,很善談,思想前衛(wèi)。他曾是陽光工作組的志愿者,后來因為做事意見不合,分道揚鑣成立了自己的同心工作組。沈陽的愛之援助工作組與陽光工作組;鞍山的同志社區(qū)工作組與鞍山好兄弟工作組。它們的負責人原來都是同一個工作組的,后來因意見不合,各立門戶。

這種分裂模式是否是防艾草根組織增值的主要模式呢?這有待于我們考察更多的草根組織來驗證。

3 共性問題。不論何種模式,草根組織目前存在的較為普遍的共性問題是:

(1)這些組織在經(jīng)費和辦公場所等方面存在缺陷,一般沒有專門的辦公場所,有些要么是在負責人的家中或單位,要么即便租有專門的辦公場所也是相當簡陋。在經(jīng)費上多沒有固定的來源,資金缺乏,開展活動比較困難。目前大多組織生存與防艾活動已經(jīng)形成對特定防艾項目的強依賴性,能夠開展經(jīng)常性工作的組織往往仰賴球五項目的經(jīng)費支持,有的組織也有來自紅十字會的項目支持。有人表示,如果沒有了球五項目則很難保證它們還能很好地維持下去,可見組織的自我生存能力薄弱是一個嚴峻的問題。

(2)組織內(nèi)部建設與管理不規(guī)范,如財務制度不健全,經(jīng)費有限卻管理粗放,不夠透明,資金安全性缺乏保證,由此常常引起社群與志愿者的誤解與議論,甚至紛爭不斷。

(3)組織志愿者不穩(wěn)定。此點是目前各類草根組織的共性,不贅述。

(4)項目開展水平低,不規(guī)范。如監(jiān)督不足,很多防艾草根組織在成功申請到項目后便進入放任階段,很少對項目實施過程給予監(jiān)督。又如評估工作只重形式不重內(nèi)容,只重成功經(jīng)驗推廣不重失敗教訓吸取。

斬草除根范文3

這個作文網(wǎng),是我夢想的網(wǎng)站,因為我熱愛作文,視我生命的一切,我以后也有當個作家這樣的夢想,但是,現(xiàn)實讓我看到了什么,骯臟!夢想的網(wǎng)站,真正的公平,沒有抄襲,大家不管關系多好,絕不會因為人緣投票,而且可能有的人緣很好的人一堆都是他自己的賬號!我看不慣這骯臟,我想改變它,盡管我知道網(wǎng)絡無窮的大,但是,能改變一點就是要改變,所以,你們可以看出我是一個小孩子。

我很喜歡“我來寫‘春聯(lián)’”這個活動,不僅僅因為它的獎品很好,讓我想得到,更因為這個可以開發(fā)我們無窮的創(chuàng)造力,想象力。真的也有人寫的無窮的好。但是,我在看了后面的春聯(lián)以后,發(fā)現(xiàn)有一個人抄襲,我就和她說:“你抄什么啊,你以為我們都是瞎子嗎?”我是真的忍不住了,誰知,她竟說:“你有什么證據(jù)啊,怎么能這么說呢。”這是一個網(wǎng)友,叫許荔楠。我真的很詫異,你說你抄了就抄了吧,你為什么死活不承認呢?!

還有一件事情我不明白,為什么我的作文好像已經(jīng)過了七天,還沒有審核結束呢?不會是因為我的太好被震住了吧!呵呵,開個玩笑。雖然我喜歡作文,但是這件事情令我很生氣,我只能用這種方式告訴站長。

斬草除根范文4

2、拼音:sǎo dàng。

3、引證釋義:柳青《銅墻鐵壁》第七章:“經(jīng)過兩晝夜的掃蕩戰(zhàn),消滅了二十二軍兩個團。”

4、例句:飆車族破壞了社會秩序,警方?jīng)Q定斬草除根,全面掃蕩。

5、近義詞:滌蕩。

斬草除根范文5

夢見自家的大樹被人砍倒了的不安感:表示你對不能施展自己能力的焦慮.同時說明對某事缺乏自信。

夢見自己砍樹,主財運,預示夢者擁有聰穎的頭腦,將會通過自己的雙手勤勞致富、發(fā)大財。

夢見砍伐灌木,意味著夢者在自己從事的領域中能力很出色,已經(jīng)取得成功,或者即將取得成功。

夢見砍倒巨木,暗示夢者已經(jīng)找到了發(fā)財致富之路,只要沿著這條路一直走下去,持之以恒,終會獲得成功得到財富。

夢見伐倒大樹的古文解析

原文:砍伐大樹,多得財。

斬草除根范文6

【關鍵詞】 幽門螺旋桿菌; 胃滯留劑; 漂浮劑型; 草藥; 黑柯子; 黃連素

Helicobacter pylori are very common pathogenic bacteria colonizing about half of all populations and associated with the development of serious gastroduodenal diseases like gastric lymphoma, peptic ulcers and acute chronic gastritis. Current drug regimes are not wholly effective. Other problems related with the current drug regimes are lack of patient compliance, side effects and bacterial resistance. Thus, drug delivery to the site of residence in the gastric mucosa may help in solving the problems associated with the current drug therapy. Gastric retentive delivery systems potentially allow increased penetration and thus increased drug concentration at the site of action. Floating drug delivery systems, expandable or swellable drug delivery systems and bioadhesive systems are the major areas of interest to formulate gastroretentive drug delivery system against H. pylori. Generally, problems with these formulations are lack of specificity and the dependence on mucus turnover, so they fail to persist in the stomach. Gastric mucoadhesive systems are hailed as a promising technology to address this issue, penetrating the mucus layer and prolonging activity at the mucusepithelial interface. Gastroretentive delivery strategies, specifically with regard to their application as a delivery system to target Helicobacter, are a very attractive field which can cure these troublesome infections.

H. pylori is a Gramnegative, microaerophilic, spiral and flagellated bacterium, with unipolarsheathed flagella that provides motility. Its spiral shape and high motility allows it to penetrate mucus, resist gastric emptying and remain in the host gastrointestinal (GI) tract. It is now firmly established that infection with this bacterium is the cause of chronic active gastritis. Its isolation radically changed the conceptualisation of several chronic gastrointestinal illnesses including gastritis and peptic ulcers, and elimination of the causative organism became the goal of therapies [1]. Estimates from the WHO in 1994 claimed that about half of the world’s population was infected with H. pylori and although most infections are silent, a portion of the infected population will subsequently present with associated disease including chronic gastritis, peptic and duodenal ulcers. About 550 000 new cases a year of gastric cancerabout 55% of the worldwide totalwere attributed to H. pylori, and it was predicted that by 2020 to enter the top ten of leading causes of death worldwide[2, 3]. H. pylori is a very perse specy and cancer risks may be increased with strains having virulenceassociated genes (cytotoxinassociated gene, CagA), host genetics and environmental factors. The incidence of infection is higher in developing countries with up to 80%90% of adults being infected whereas in developed countries prevalence ranges from 10%50%[4].

1 Mechanism of H. pylori infections

Infection with H. pylori occurs predominately in childhood mainly between the ages 1 to 5, via oral ingestion of the bacterium, and lasts until the end of life with intrafamilial transmission being the major route in developed countries. The possible routes of transmission are food and water. The major feature of H. pylori infection is progressive injury to the gastric mucosa and its function[5, 6]. The bacterium adheres to the gastric epithelial cells, producing a direct injurious effect that is then amplified by production and release of a vacuolating cytotoxin (VacA)[7, 8]. H. pylori produces a variety of enzymes and is characterised by a high urease activity. Urea is broken down into bicarbonate and ammonia that protects the bacterium in the acid environment of the stomach. The ammonium ions produced can be toxic to the gastric superficial epithelial cells. Urease stimulates inflammatory cytokine production and activates mononuclear phagocytes. Although, after colonisation, the host immune defences are stimulated, and there is increased secretory IgA (sIgA) detected in the gastric mucosa and raised specific IgG, while the infected host is not able to eliminate the organism. Colonisation results in persistent gastric inflammation but the clinical course of infection can be very variable[9].

2 Current treatment of H. pylori infections

The treatment for eradication of H. pylori is complicated, requiring a minimum of two antibiotics in combination with gastric acid inhibitors. Although H. pylori is sensitive to many antibiotics in vitro, no single agent is effective alone in vivo. Firstly, the bacterium resides below the gastric mucus adherent to the gastric epithelium and thus access of drugs to this site is limited. Secondly, the strain may have acquired resistance to the commonly used antimicrobial drugs[10]. These infections are currently treated with a firstline triple therapy treatment, consisting of one proton pump inhibitor (PPI) and two antibiotics. None of the antibiotics used achieves sufficient eradication when used alone and also require adjuvant therapy[11]. This consists of agents increasing pH within the stomach to allow local action of antibiotics not active at low pH, and PPIs are used at a dose equivalent to 20 mg omeprazole twice daily. It was suggested that ranitidine bismuth citrate (RBC) regimens may be less influenced by antibiotic resistance than PPIbased therapies[12].

The most effective therapies combine two antibiotics including clarithromycin and amoxicillin with a gastric acid inhibitor. However, increasing resistance to current antibiotics is driving research to produce alternatives to the commonly used therapies. In addition to increasing levels of antibiotic resistance, the hostile environment of the stomach, reducing antibiotic bioavailability at the site of action, contributes to failures in treatment[13]. Current recommended regimes are not wholly effective, for example, triple therapy with bismuth, metronidazole and amoxicillin or tetracycline has an eradication efficiency of 60%80%, and patient compliance, sideeffects and bacterial resistance can be problematic with this regime[14]. Alternatives proposed include quadruple therapies, based on, for example, colloidal bismuth subcitrate, tetracycline, metronidazole and omeprazole[15]. Patient compliance with such a complicated dosage regime could be improved by combining the therapies in a single dosage form, and a capsule containing bismuth biskalcitrate, metronidazole and tetracycline (Helicide) has been developed in an effort to improve patient compliance and has currently received approval[16]. There is concern regarding acquired resistance to two of the commonly prescribed antibiotics: clarithromycin and metronidazole. Although not as widespread, resistance to metronidazole can also be problematic but it can be overcome in some cases by lengthening the duration of treatment[17].

3 Drug delivery systems for gastric retention

Major problems in the eradication of H. pylori are the presence of antibioticresistant bacteria requiring multiple drugs with complicated dosing schedules and bacterial residence in an environment where high drug concentrations are difficult to achieve. In order to ensure that the therapy is adequately delivered to the unique niche of the gastric mucosa, development of oral dosage forms with prolonged gastric residence is desirable. Gastric retentive delivery systems have been studied for a number of years, and generally requirements of such strategies are that the vehicle maintains a controlled release of drug and exhibits prolonged residence time in the stomach. Overcoming the physiological barriers of the human GI tract is a major challenge facing successful development of gastric retentive systems and leads to problems with reproducibility. In addition to the thick protective mucus layer, gastrointestinal motility patterns are another obstacle facing drug delivery to the stomach. In the fasted state, the interdigestive myoelectric motor complex (IMMC) is a 2hour cycle of peristaltic activity that regulates motility patterns[18]. Phase Ⅲ of the IMMC is also called the housekeeper wave and consists of strong, intense contractions designed to remove debris such as undigested food from the stomach[19, 20]. Gastric residence time will depend on which phase of IMMC is active. In the fed state, the stomach churns food to sizes less than 1 mm, which is then emptied to the duodenum. Type of the food determines its residence time in the stomach with liquids emptying rapidly and solids much more slowly. Gastric residence time is generally longer in the fed rather than fasted state. The gastric residence time of dosage forms is also influenced by posture, age, gender, disease status and concomitant medication. A number of different techniques have been explored to increase gastric retention including high density and magnetic systems, but the three main systems are floating systems, bio/mucoadhesive systems and swelling systems.

4 Floating drug delivery systems

Various approaches had been made since the late 1970s to utilise floating behaviour in order to prolong residence. Designs include hydrodynamically balanced systems (HBS), microspheres, gasgenerating systems and raftforming systems. Originally, such systems were proposed to reduce fluctuations in drug levels and provide sustained release as the duration of most oral sustained release preparations is 812 hours, due to a relatively short GI transit time[21, 22]. HBS has a bulk density lower than gastric fluids and contain one or more colloids formulated into a single unit with the drug and other additives, which swell on contact with water and facilitate floating[23, 24]. A density of less than 1.0 g/mL is required. A triplelayer floating tablet system was proposed containing a swellable gasgenerating layer, a swellable drugcontaining layer (with tetracycline and metronidazole) and a rapidly dissolving layer containing bismuth salts. The system was capable of providing sustained release of the antibiotics in vitro at pH 1.8 and demonstrated buoyancy in vitro, however no in vivo results are reported. Tablets containing a 1︰2 ratio of hydroxypropylcellulose to amoxicillin, with a gasgenerating system, failed to improve efficacy. These large singlelayer tablets remained buoyant in vitro but bioavailability was reduced to 80.5% as compared with conventional capsules in fasted humans[25]. Intersubject variability in gastric transit times with floating tablets and HBS results in unreliable and irreproducible residence times in the stomach and remains a significant problem with such systems. This can be addressed by using multipleunit pided systems such as microspheres. As these can spread evenly through the stomach contents, they can avoid the problems of variable and early gastric emptying or bursting associated with the singleunit systems. Polymers used in formulation of floating multipleunits include caesingelatin acrylic polymers such as Eudragits and alginates[26]. Alginic acid is a polysaccharide consisting of Dmannuronic acid and Lguluronic acid. It forms a bioadhesive and stable gel with palent cations such as calcium and the sodium salt been used in a variety of oral and topical formulations. Floating alginate systems such as Gaviscon form a buoyant gel which floats on the gastric contents alleviating symptoms of heartburn. Its stability in acidic media has made it a popular choice for gastric retentive delivery systems. For example, floating multiple units consisting of a calcium alginate core, separated from a calcium alginate/polyvinyl alcohol (PVA) membrane by an air compartment displayed prolonged gastric retention after a meal. Alginate beads are commonly prepared by extruding alginate, dropwise, into a solution containing Ca2+. The resultant beads are porous and can be used to encapsulate a variety of drugs with a wide range of physicochemical properties[27]. Adequate control of drug release from such formulations often requires some modification to the matrix. For example, foambased floating microspheres can be prepared by adding polypropylene foam powder to an organic solution containing dissolving polymer (Eudragit RS or polymethyl methacrylate, PMMA) and drug. Upon solvent evaporation, freeflowing microspheres are formed with extended release profiles[28]. Two types of alginate floating beads containing metronidazole were compared; one formulation contained chitosan and the other contained vegetable oils. In vitro release was complete from all formulations within two hours. Following administration to guinea pigs, it was concluded that after three hours chitosancontaining particles resulted in increased drug levels in the gastric mucosa as compared with metronidazole solution[29]. A multipleunit floating dosage form formulated using calcium alginate was prepared by dropping sodium alginate solution into calcium chloride and the resultant particles were freezedried. Amoxicillin was incorporated into these beads by addition of drug to the calcium chloride solution. Once the sodium alginate was extruded into the solution, the resultant gel beads were left for thirty minutes before extraction and freezedrying. Amylose was also added to the formulation in an attempt to reduce the release rate. Amoxicillin release showed an initial burst effect and the release was described by Higuchi kinetics, implying that it is controlled by diffusion of the drug through a porous matrix. Gammascintigraphic studies showed evidence of gastric retention of the floating beads in all seven subjects even following normal food intake.

A major limitation with such systems is the requirement for sufficient volumes of gastric acid within the stomach to enable the devices to float. It may be that using a single approach to localise delivery in the stomach may not be sufficient to resist the forces of gastric emptying. It was therefore envisaged that a floating dosage form with mucoadhesive polymers could extend the period of gastric retention, exploiting the retentive properties of the floating system and the ability of bioadhesive formulations to adhere to inflamed tissue. Floating, bioadhesive microsphere systems containing acetohydroxamic acid (AHA), a cytoplasmic urease inhibitor, were prepared. A solution of AHA and the acrylic polymer (Eudragit E) in ethanol/dichloromethane was added to an aqueous PVA solution to form an oilinwater emulsion. The drug and polymer precipitated due to preferential diffusion of ethanol into the aqueous phase. After evaporation of the dichloromethane, the particles were dried and an air cavity was produced inside the spheres giving the particles the ability to float[30]. These particles were spraycoated with the mucoadhesive polymer, polycarbophil. Floating ability was demonstrated in vitro and demonstrated greater percentage growth inhibition of H. pylori in vitro than free drug. Release rates were extended due to the polycarbophil coating[31]. Similar preparations using polybisphenolA carbonate as the coating polymer also showed buoyancy, extended drug release and inhibition of growth of H. pylori in vitro. Clearance of an inoculated strain of H. pylori from the stomach of gerbils following oral delivery of the encapsulated drug was shown to be better than free drug, presumably due to better retention. Although AHA has been shown to be effective at reducing gastritis in a Mongolian gerbil model, further studies are needed to prove that established antibiotics could also be successfully encapsulated into, and released from, such formulations and their efficacy demonstrated in human models[30].

5 Herbal and integrative drugs against H. pylori infections

5.1 Black myrobalan The aqueous extract of black myrobalan (Terminalia chebula Retz) has been shown to have uniform antibacterial activity against ten clinical strains of H. pylori[32, 33]. This activity was bactericidal after 3 h and was stable after autoclaving. Although Sato and coworkers[34] reported gallic acid and ethyl gallate in T. chebula Retz and have shown antibacterial activity of ethanol extracts of this plant against both methicillin resistant and sensitive Staphylococcus aureus and other bacteria, the components of T. chebula Retz aqueous extracts responsible for the observed bacteriocidal activity remain unknown[35]. The antibacterial activity of aqueous extracts of black myrobalan against H. pylori was significantly higher than that of ether and alcoholic extracts. The aqueous extract preserved its antibacterial activity after autoclaving for 30 min at 121 ℃ and was inhibitory at 125150 mg/L. When the plant powder was tested directly against H. pylori, without grinding and (or) extraction and using Colombia Agar plates, the mean inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values were 150 and 175 mg/L, respectively.

5.2 Ginger Ginger root (Zingiber officinale Rosc.) has been used traditionally for the treatment of gastrointestinal ailments such as motion sickness, dyspepsia and hyperemesis gravidarum, and is also reported to have chemopreventative activity in animal models[36]. The gingerols are a group of structurally related polyphenolic compounds isolated from ginger and known to be the active constituents. Since H. pylori is the primary etiological agent associated with dyspepsia, peptic ulcer disease and the development of gastric and colon cancer, the antiH. pylori effects of ginger and its constituents were tested in vitro[37]. A methanol extract of the dried powdered ginger rhizome, fractions of the extract and the isolated constituents, 6, 8 and 10gingerol and 6shogoal, were tested against 19 strains of H. pylori, including 5 CagApositive strains. The methanol extract of ginger rhizome inhibited the growth of all 19 strains in vitro with a MIC range of 6.25 to 50 μg/mL. One fraction of the crude extract, containing the gingerols, was active and inhibited the growth of all H. pylori strains with an MIC range of 0.78 to 12.5 μg/mL and with significant activity against the CagApositive strains. These data demonstrate that ginger root extracts containing the gingerols inhibit the growth of H. pylori CagApositive strains in vitro and this activity may contribute to its chemopreventative effects[38].

5.3 Turmeric Curcumin, a polyphenolic chemical constituent derived from turmeric (Curcuma longa L.), has been shown to prevent gastric and colon cancers in rodents[39]. Many mechanisms had been proposed for the chemopreventative effects, although the effect of curcumin on the growth of H. pylori has not been reported. H. pylori is a group 1 carcinogen and is associated with the development of gastric and colon cancer. A methanol extract of the dried powdered turmeric rhizome and curcumin were tested against 19 strains of H. pylori, including 5 CagApositive strains. Both the methanol extract and curcumin inhibited the growth of all strains of H. pylori in vitro with a minimum inhibitory concentration range of 6.2550 μg/mL. These data demonstrate that curcumin inhibits the growth of H. pylori CagApositive strains in vitro, and this may be one of the mechanisms by which curcumin exerts its chemopreventative effects[40, 41].

5.4 Thyme A popular herbal remedy in ancient Egypt, Greece and Rome, thyme was mainly used for headaches, digestive problems, respiratory illness, and as a moodenhancer. Researcher who investigated the antimicrobial properties of 21 essential oils against five important foodborne pathogens, including Escherichia coli (E. coli) noted that thyme was very effective at inhibiting the bacteria. Thyme extract was compared with several antibacterials; it had a significant inhibitory effect on H. pylori[42].

5.5 Licorice In a recent study at the Institute of Medical Microbiology and Virology, Germany, researchers found that licorice extract produced a potent effect against strains of H. pylori that are resistant against clarithromycin, one of the antibiotics typically used in the three antibiotic treatment regimens[43]. The authors concluded that this study provides hope that licorice extract can form the basis for an alternative treatment for H. pylori infections[44].

5.6 Berberine Berberine is a plant alkaloid isolated from the roots and bark of several plants including golden seal, barberry, Coptis chinensis Franch. and Yerba mansa. Berberinecontaining plants have been used medicinally in ayurvedic and Chinese medicine, and are known to have antimicrobial activity against a variety of organisms including bacteria, viruses, fungi, protozoans, helminths, and chlamydia. More recently, berberine had been demonstrated to be effective against H. pylori[45].

5.7 Goshuyn (Evodia rutaecarpaa Chinese herb) After testing no less than 113 Chinese herbs for antiH. pylori activity in vitro, Japanese researchers identified goshuyn (Evodia rutaecarpa) as the most effective medical plant. Subsequently, they conducted a randomised clinical trial of two synthetic antibiotics versus the same combination plus goshuyn. The eradication rates were 60% and 80%, respectively[46].

5.8 Other Chinese herbals In an animal study or bacteriostatic test of 53 Chinese herbs, Zhang et al[47] found Coptis chinensis, Rheum palmatum, Panax notogenseng and Magnolia officinalis were effective against H. pylori. Prunus mume and Corydalis yanhusuo were moderate effective.

6 Conclusion

The gastric retention approaches as well as herbal drugs described here have applications for treatment of H. pylori infection although further development is required for each to be fully effective, especially in human studies. Overcoming the high mucus turnover rate and resulting limited retention times is a challenge for bioadhesive systems, and swelling systems must guarantee clearance from the stomach after a certain time to prevent any obstruction. The lack of availability of biocompatible chemical cross linking agents is a major stumbling block in the development of covalently crosslinked hydrogels. Floating systems are available commercially, and combination approaches, using floating behaviour and mucoadhesion, have also shown promise. Exploiting dual mechanisms of retention may provide the strength and reproducibility required to permit successful advancement in this field. So in future, a combination of herbal drugs with the novel drug delivery systems mentioned above, may lead to an important breakthrough in the herbal/integrative treatment of H. pylori infections.

7 Acknowledgement

I would like to acknowledge Dr. K. Pundarikakshudu for giving constant help to compile the information and in preparation of this article. I am also very much thankful to Prof. B.M. Peerzada and Prof. Manish Shah for constant encouragement.

參考文獻

1 Andreica V, SandicaAndreica B, Draghici A, Chiorean E, Georoceanu A, Rusu M. The prevalence of antiHelicobacter pylori antibodies in the patients with ischemic heart disease. Rom J Intern Med. 2004; 42(1): 183189.

2 Morgner A, Bayerdorffer E, Neubauer A, Stolte M. Malignant tumors of the stomach. Gastric mucosaassociated lymphoid tissue lymphoma and Helicobacter pylori. Gastroenterol Clin North Am. 2000; 29(3): 593607.

3 Kawahara Y, Mizuno M, Yoshino T, Yokota K, Oguma K, Okada H, Fujiki S, Shiratori Y. HLADQA1*0103DQB1*0601 haplotype and Helicobacter pyloripositive gastric mucosaassociated lymphoid tissue lymphoma. Clin Gastroenterol Hepatol. 2005; 3(9): 865868.

4 Marshall B. Helicobacter pylori: 20 years on. Clin Med. 2002; 2(2): 147152.

5 Suzuki H, Ishii H. Role of apoptosis in Helicobacter pyloriassociated gastric mucosal injury. J Gastroenterol Hepatol. 2000; 15 Suppl: D46D54.

6 Lehmann FS, Terracciano L, Carena I, Baeriswyl C, Drewe J, Tornillo L, De Libero G, Beglinger C. In situ correlation of cytokine secretion and apoptosis in Helicobacter pyloriassociated gastritis. Am J Physiol Gastrointest Liver Physiol. 2002; 283(2): G481G488.

7 Papini E, Zoratti M, Cover TL. In search of the Helicobacter pylori VacA mechanism of action. Toxicon. 2001; 39(11): 17571767.

8 Blanchard TG, Drakes ML, Czinn SJ. Helicobacter infection: pathogenesis. Curr Opin Gastroenterol. 2004; 20(1): 1015.

9 Atherton JC. The pathogenesis of Helicobacter pyloriinduced gastroduodenal diseases. Annu Rev Pathol. 2006; 1: 6396.

10 Iijima K, Sekine H, Koike T, Imatani A, Ohara S, Shimosegawa T. Longterm effect of Helicobacter pylori eradication on the reversibility of acid secretion in profound hypochlorhydria. Aliment Pharmacol Ther. 2004; 19(11): 11811188.

11 Chang FY, Lu CL, Chen CY, Luo JC, Jium KL, Lee SD. Effect of Helicobacter pylori eradicated therapy on water gastric emptying in patients with active duodenal ulcer. J Gastroenterol Hepatol. 2003; 18(11): 12501256.

12 Uygun A, Kadayifci A, Yesilova Z, Ates Y, Safali M, Ilgan S, Bagci S, Dagalp K. Poor efficacy of ranitidine bismuth citratebased triple therapies for Helicobacter pylori eradication. Indian J Gastroenterol. 2007; 26(4): 174177.

13 Batchelor H, Conway B,Williams RO. Targeting the infections within the gastrointestinal tract. In: Williams RO, Taft DR, McConville JT. Advanced drug formulation design to optimize therapeutic outcomes (Drugs and the pharmaceutical sciences). New York: Informa Healthcare. 2007: 217244.

14 Lahaie R, Farley A, Dallaire C, Archambault A, Fallone CA, Ponich T, Hunt R, Oravec M, Whitsitt P, Van Zanten SV, Marcon N, Bailey R, Dumont A, Nguyen B, Desrochers S, Spénard J. Bismuthbased quadruple therapy with bismuth subcitrate, metronidazole, tetracycline and omeprazole in the eradication of Helicobacter pylori. Can J Gastroenterol. 2001; 15(9): 581585.

15 De Boer WA. A novel therapeutic approach for Helicobacter pylori infection: the bismuthbased triple therapy monocapsule. Expert Opin Investig Drugs. 2001; 10(8): 15591566.

16 Kato M, Yamaoka Y, Kim JJ, Reddy R, Asaka M, Kashima K, Osato MS, ElZaatari FA, Graham DY, Kwon DH. Regional differences in metronidazole resistance and increasing clarithromycin resistance among Helicobacter pylori isolates from Japan. Antimicrob Agents Chemother. 2000; 44(8): 22142216.

17 Streubel A, Siepmann J, Bodmeier R. Multiple unit gastroretentive drug delivery systems: a new preparation method for low density microparticles. J Microencapsul. 2003; 20(3): 329347

18 Bernier JJ, Adrian V. Les aliments dans le tube digestif. Paris: Doin Editions. 1988: 1124.

19 Dubernet C. Systèmes  libération gastrique prolongée. In: FalsonRieg F, Faivre V, Pirot F.Nouvelles formes médicamenteuses. Paris: Médicales Internationales, Lavoisier. 2004: 119133.

20 Dressman JB, Lennerns H. Oral drug absorption: prediction and assessment. New York: Marcel Dekker. 2000: 110.

21 Reddy LH, Murthy RS. Floating dosage systems in drug delivery. Crit Rev Ther Drug Carrier Syst. 2002; 19(6): 553585.

22 Hwang SJ, Park H, Park K. Gastric retentive drugdelivery systems. Crit Rev Ther Drug Carrier Syst. 1998; 15(3): 243284.

23 Erni W, Held K. The hydrodynamically balanced system: a novel principle of controlled drug release. Eur Neurol. 1987; 27(Suppl 1): 2127.

24 Koller WC, Pahwa R. Treating motor fluctuations with controlledrelease levodopa preparations. Neurology. 1994; 44(7 Suppl 6): S23S28.

25 Kawashima Y, Niwa T, Takeuchi H, Hino T, Itoh Y. Hollow microspheres for use as a floating controlled drug delivery system in the stomach. J Pharm Sci. 1992; 81(2): 135140.

26 Streubel A, Siepmann J, Bodmeier R. Floating microparticles based on low density foam powder. Int J Pharm. 2002; 241(2): 279292.

27 Talukder R, Fassihi R. Gastroretentive delivery systems: hollow beads. Drug Dev Ind Pharm. 2004; 30(4): 405412.

28 Murata Y, Sasaki N, Miyamoto E, Kawashima S. Use of floating alginate gel beads for stomachspecific drug delivery. Eur J Pharm Biopharm. 2000; 50(2): 221226.

29 Whitehead L, Fell JT, Collett JH. Development of a gastroretentive dosage form. Eur J Pharm Sci. 1996; 4(Suppl 1): S182.

30 Umamaheshwari RB, Jain S, Bhadra D, Jain NK. Floating microspheres bearing acetohydroxamic acid for the treatment of Helicobacter pylori. J Pharm Pharmacol. 2003; 55(12): 16071613.

31 Umamaheswari RB, Jain S, Tripathi PK, Agrawal GP, Jain NK. Floatingbioadhesive microspheres containing acetohydroxamic acid for clearance of Helicobacter pylori. Drug Deliv. 2002; 9(4): 223231.

32 Akhtar H, Virmani OP, Popli SP, Misra LN, Gupta MM, Srivastava GN, Abraham Z, Singh AK. Dictionary of Indian medicinal plants. Lucknow: Central Institute of Medicinal and Aromatic Plants. 1992: 458.

33 Inamdar MC, Rajarama Rao MR. Studies on the pharmacology of Terminalia chebula. J Sci Ind Res. 1962; 21C: 345348.

34 Sato Y, Oketani H, Singyouchi K, Ohtesuro T, Kihara M, Shibata H, Higuti T. Extraction and purification of effective antimicrobial constituents of Terminalia chebula RETS. against methicillinresistance Staphylococcus aureus. Biol Pharm Bull. 1997; 20(4): 401404.

35 Malekzadeh F, Ehsanifar H, Shahamat M, Levin M, Colwell RR. Antibacterial activity of black myrobalan (Terminalia chebula Retz) against Helicobacter pylori. Int J Antimicrob Agents. 2001; 18(1): 8588.

36 Shukla Y, Kalra N. Cancer chemoprevention with garlic and its constituents. Cancer Lett. 2007; 247(2): 167181.

37 Presser A. Pharmacists’s guide to medicinal herbs. Petaluma, CA: Smart Publications. 2000: 147154.

38 Mahady GB, Pendland SL, Yun GS, Lu ZZ, Stoia A. Ginger (Zingiber officinale Roscoe) and the gingerols inhibit the growth of CagA+ strains of Helicobacter pylori. Anticancer Res. 2003; 23(5A): 36993702.

39 Mahady GB, Pendland SL, Yun G, Lu ZZ. Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Res. 2002; 22(6C): 41794181.

40 Nostro A, Cellini L, Di Bartolomeo S, Di Campli E, Grande R, Cannatelli MA, Marzio L, Alonzo V. Antibacterial effect of plant extracts against Helicobacter pylori. Phytother Res. 2005; 19(3): 198202.

41 ForystLudwig A, Neumann M, SchneiderBrachert W, Naumann M. Curcumin blocks NFkappaB and the motogenic response in Helicobacter pyloriinfected epithelial cells. Biochem Biophys Res Commun. 2004; 316(4): 10651072.

42 SmithPalmer A, Stewart J, Fyfe L. Antimicrobial properties of plant essential oils and essences against five important foodborne pathogens. Lett Appl Microbiol. 1998; 26(2): 118122.

43 Krausse R, Bielenberg J, Blaschek W, Ullmann U. In vitro antiHelicobacter pylori activity of Extractum liquiritiae, glycyrrhizin and its metabolites. J Antimicrob Chemother. 2004; 54(1): 243246.

44 Fukai T, Marumo A, Kaitou K, Kanda T, Terada S, Nomura T. AntiHelicobacter pylori flavonoids from licorice extract. Life Sci. 2002; 71(12): 14491463.

45 Mahady GB, Pendland SL, Stoia A, Chadwick LR. In vitro susceptibility of Helicobacter pylori to isoquinoline alkaloids from Sanguinaria canadensis and Hydrastis canadensis. Phytother Res. 2003; 17(3): 217221.

相關精選

主站蜘蛛池模板: 被灌满精子的少妇视频| 中文字幕资源网| 日韩人妻熟女中文字幕a美景之屋| 亚洲精品中文字幕无码av| 狠狠88综合久久久久综合网| 人妻熟妇乱又伦精品hd| 俄罗斯老熟妇色xxxx| 国产精品区一区第一页| 色翁荡息又大又硬又粗视频| 国产精品国产三级国av麻豆| 亚洲精品揄拍自拍首页一| 亚洲欧美18岁网站| 亚洲国产a∨无码中文777| 性做久久久久久久| 含紧一点h边做边走动免费视频| 狠狠躁夜夜躁人人爽天天不| 永久免费看一区二区看片| 久久久无码一区二区三区| 国产亚av手机在线观看| 久久精品国产一区二区三区肥胖| 久久久久亚洲精品无码网址| 国产在线精品第一区二区| 4hu44四虎www在线影院麻豆| 国产亚州精品女人久久久久久| 亚洲男女内射在线播放| 一本色道久久88加勒比—综合| 国产在热线精品视频99公交| 老男人久久青草av高清| 伊人久久大香线蕉综合5g| 亚洲无线码在线一区观看| 手机成亚洲人成电影网站| 日本成熟老妇乱| 在线亚洲午夜片av大片| 999精品无码a片在线1级| 久久国产成人午夜av影院| 亚洲精品四区麻豆文化传媒| 亚洲日韩爆乳中文字幕欧美| 欧美 变态 另类 人妖| 国产成人综合久久免费导航| 五月天激情婷婷婷久久| 美女网站免费福利视频|